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ABSTRACT
The intelligent reflective surface (IRS) is a new technology that
can reduce the number of base stations and improve signal quality.
Whereas in the literature, IRS is often considered in one-hop sce-
narios, we propose to address two-hop IRS in a vehicular context.
On the one hand, two-hop IRS should improve connectivity by en-
abling blind devices in blind areas to be connected to the network,
and on the other, connections may be more volatile due to a higher
number of intermediate devices. In this work, their impact on net-
work performance is investigated through different performance
criteria. Our approach is validated using real vehicular traces in the
city of Roma, Italy.

CCS CONCEPTS
• Networks→ Network performance analysis; Network simu-
lations.
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1 INTRODUCTION
Mobile communications have the attractive benefits of being wire-
less and providing a high-speed internet connection. Therefore, it is
a boom era for the rapid development of wireless communications.
Moreover, mobile operators, through developers, are looking for
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new technologies to increase bit rates and reduce power consump-
tion beyond 5G networks.

One technology for solving this problem is Intelligent Reflective
Surface (IRS). IRS supports wireless infrastructure reduction by
reducing the number of required base stations (BSs)/gNodeB to
mitigate non-line-of-sight (NLoS) areas with the base station. It is
also a great asset in a constant bit rate connection, as it increases
the strength of the signal received.

Most of the research assumes that the IRS has a fixed location
and that signals pass through a single reflection stage on the surface
of the IRS, which is made of a reconfigurable meta-material.

In our previous work [14], we proposed two optimization mod-
els for the IRS location to improve network performance. As a
complement, we present, in this work, the use of IRS devices that
collaboratively reflect signals in a multi-hop fashion to regions suf-
fering from NLoS up to the base station. Additionally, we propose
IRS positions are mobile and equipped in buses. We thus present
different approaches that contribute to the best selection of buses
that the IRS can equip to work collaboratively to form multi-hop
reflectors for mobile vehicles and users in certain blind spots to
improve wireless network coverage and performance. These ap-
proaches are used to select the active-passive and passive-passive
network reflectors combination. These approaches are based on
future knowledge of bus and cab positions using trajectory pre-
dictions. The idea behind these approaches is to guarantee good
quality of service by optimizing the number of handovers. In par-
ticular, these strategies are based on the number of times a bus will
occur in the future, to select the IRS.

The performance of the proposed approaches is evaluated based
on the traces of taxis and the public transportation of buses [1],
[12] in the city of Rome.

The rest of the paper is organized as follows: Section 2 introduces
the related work. Then, in section 3, we define and describe our
approach, before presenting the results obtained in part 4. The fifth
section concludes the article with an outlook for future work.

2 RELATEDWORK
Most studies propose fixed IRS positioning or using active relays
for mobility, such as mobile relays. In [7], for example, a compari-
son is made between a mobile relay and IRS systems in an indoor
environment to support NLoS for mmWave networks. Another
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article looks at the positioning of the IRS to optimize throughput.
It proposes a ring architecture with an access point at the center.
The IRS is then alternately placed close to the AP and at the end to
assess signal quality. Finally, the number of IRS and rings is varied
to evaluate throughput. The results are compared with approaches
without IRS or other power control policies.

In [13], a review of articles on the IRS is proposed, from the
design of the IRS to their use in wireless networks. Some difficulties
linked to the IRS are also exposed, for example, the acquisition of
the channel state to know when to transmit and avoid collisions,
the lack of implementation and real experimentation on the subject,
etc. Finally, the authors close the article with a list of research
directions.

As with most technologies, more and more studies are combin-
ing the use of IRS with other technologies for better performance.
This is the case of [15], where sensors installed on IRS are used for
target detection. In the field of security, models against eavesdrop-
ping are presented. This is the case of [18], which aims to secure
communications against eavesdropping. They also rely on machine
learning, more precisely on Deep Reinforcement Learning, to guar-
antee optimal QoS by searching for optimal reflection matrices that
maximize the system’s achievable throughput. Deep RL is also used
in [4], which proposes joint optimization of UAV trajectories and
phase changes of IRS elements in communications between UAVs
and mobile users.

Several contributions have suggested using a fixed-site single
IRS in wireless communications as in [2] and [5]. Furthermore,
the work of [14] has suggested the dynamic placement of the IRS.
About multi-hop wireless signal reflections using multiple IRS de-
ployments, this is a recent contribution as there are few papers
on this topic. One of these articles was published in 2020, and the
others in 2022.

The work of [8] has proposed using multiple-IRS deployment
to support wireless communication between BS and mobile users.
First, the authors suggested selecting the IRS group based on maxi-
mizing the signal strength received by the cell phone user. Secondly,
the derivation is introduced to calculate the trade-off between the
optimal path of the base station and the mobile user and the beam-
forming gain to minimize the path loss. In addition, this trade-off
is optimized based on graph theory.

In the work of [16], the use of drones to transmit radio signals to
another drone or to a ground station to form a multi-hop transmis-
sion is proposed. In addition, the work examined the impact of using
an IRS between the drone and the ground station to improve quality
of service (QoS). To achieve this, a heuristic graph-based power
consumption model is proposed to reduce the power consumption
of drones.

In [9], the main contribution of this work is to use multiple-IRSs
with a multiple-input multiple-output antenna. The IRS selection
criteria are improved using a graph model based on the maximum
signal power of the received signal. Moreover, an efficient routing
model based on an iterative solution has been proposed.

Thework of [11] used two IRSs to propose a new design for phase
shifting and precoding in a MIMO network. The aim is to maximize

the weighted sum rate, whose model is non-convex. Since non-
convex models cannot be solved using standard tools, two meth-
ods are applied to solve the optimization problem: majorization-
minimization and block coordinates descent.

In the paper [10], an overview of the use of single, double, and
multiple IRSs deployment. Also, the objective function of this work
is to improve both IRS passive reflection and channel utilization.

Moreover, in the work of [6], an optimization model for multiple-
IRSs deployment of several hops is proposed. The objective function
seeks to optimize two parameters that maximize the transmission
rate and achieve non-interference transmission for several IRSs and
graph network topology.

3 TWO HOPS IRS
The idea here is to extend the signal based on multi-hop approaches
and thus achieve better coverage. To achieve this, we assume the
existence of areas inaccessible to antennas, known as blind zones,
in our study region. Any IRS bus in these areas will need a second
IRS to extend its signal to the base station. And so, a second IRS
will be chosen.

Figure 1: Usage scenario

Multi-hop approaches are widely used in wireless networks:
IoT networks, VANeT, etc. They enable network coverage to be
extended beyond the reach of individual nodes. They are often im-
plemented at the routing level. Figure 1 describes a multi-hop IRS
scenario for extending an antenna’s signal using two IRSs. Assum-
ing that a cab or a mobile user is not in sight of the antenna, IRS
technology enables these objects to be covered passively. However,
if the IRS visible to the antenna is out of range of the user, it can
call on another IRS to extend the signal back to the user.

The choice of an IRS is made by election. Each mobile will elect
an IRS called IRS1. If the IRS1 is in a blind zone, it will hold an
election to choose its potential IRS, called IRS2. Figure 2 shows the
IRS election process for a cab in a blind zone. Initially, we looked
for all the buses that could cover the cab. If at least one bus covers
the cab, a bus is chosen according to the strategy: Q, Q’A, Q’B, or
Q". For each selected bus, one is elected per zone. The bus with the
most votes becomes the IRS for a zone. Next, we check whether the
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chosen IRS is in Line-of-Sight(LoS) with the antenna or whether it,
too, is in a blind area. If the former, the election is over. However,
in the second case, the process continues with the search for buses
in LoS that can cover the level 1 IRS or IRS1. If there are any, as in
the case of the taxi, one bus is chosen according to the strategy, and
then one bus is elected from among those selected in the zone to
reduce the number of buses used. This is the IRS level 2 or IRS2 bus.
This work aims to show the difference between one and two hops,

Figure 2: Flowchart of IRS election algorithm

so the management of reflection angles is just as present in a single
hop as in two hops. Given this, we have assumed that the IRSs
are randomly configured, which, according to [17], offers better
performance than without the IRS.

3.1 Settings
This work exploits taxis and bus records from Rome’s public trans-
port system. Bus information includes line numbers, stops, and
timetables (schedules). We also use taxi traces for one day, between
10 a.m. and 11 p.m., with around 1,535 trajectories in the historic
center of Rome. Each trajectory contains ten positions. We then use
the results of trajectory prediction obtained in [3] for that day. This
prediction model is based on LSTM (Long Short Term Memory) and
predicts at each time t, a taxi’s position at times t+1, t+2, t+3, and
t+4. The coverage area is restricted to the following coordinates:

latitude 41.8 - 42.0 and longitude 12.4 - 12.6, representing an ap-
proximate area of 22.239 km x 16.576 km. This area is divided into
small zones of around 250 x 200 meters, with randomly distributed
blind zones. The blind zone percentage is set at 40%. In the next
section, we set the coverage radius between 100 and 600 meters.

3.2 Strategies
First, a taxi in a blind area will elect its IRS bus, and then each zone
- note that here, a zone represents the subdivision of the study area
into smaller zones - will elect an IRS1 for the zone according to
each strategy. If the chosen IRS1 is in a non-blind area, the election
stops. Otherwise, the blind IRS1 will repeat the election process to
select a non-blind IRS in its vicinity.

Four strategies are studied based on IRS selection:
• Q: A taxi is randomly elected from the list of available buses.
• Q'A: The bus most likely to appear most often in the future
is chosen as the IRS.

• Q'B: Similar to the Q'A strategy, except that the cab retains
its previous IRS if it is still under its coverage.

• Q": Identical to Q'A except that the previous IRS is not con-
sidered.

The following equations define the different strategies Q, Q’, and
Q" with :

• i: a taxi identifier
• n: a time slot, set at one minute considering the dynamic
nature of vehicular networks.

• j: an IRS j
• 𝑑𝑖,𝑛 ( 𝑗) : distance between taxi i and IRS bus j
• 𝜌 : the coverage radius

𝑞𝑖,𝑛 ( 𝑗) =
{

0 if 𝑑𝑖,𝑛 ( 𝑗) > 𝜌

1 otherwise. (1)

𝑞′𝑖,𝑛 ( 𝑗) =
𝑇∑︁
𝑘=0

1{𝑑𝑖,𝑛+𝑘 ( 𝑗 )<𝜌 } (2)

𝑞”𝑖,𝑛 ( 𝑗) =
𝑇∑︁
𝑘=0

𝑘∏
𝑙=0

1{𝑑𝑖,𝑛+𝑘 ( 𝑗 )<𝜌 } (3)

The last three strategies are based on predictions of taxis and bus
positions, while the Q strategy is without predictions.

The following criteria are used to evaluate the different strate-
gies:

• Disconnectivity: It represents the number of times a mo-
bile is not covered (no IRS) or covered by an IRS1 in a blind
zone without an IRS2.

• Number of handovers: This is the average number of times
a device changes IRS. Changing one of the IRS in the case of
a multi-hop is considered a handover.

• Average connection duration: This is the average period
for which a cab retains the same IRS. Changing one of the
IRS (if applicable) is a change of connection.

4 RESULTS
Results are collected for each criterion: disconnectivity, number of
handovers, and connection duration. For each strategy, we compare
the 2-hop results with the single-hop results. Figure 3 shows the
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coverage, i.e., the average number of buses present as a function of
the coverage radius. It is strategy-independent and thus identical to
all strategies. It shows that just over half the cabs are covered for a
radius of R=100m and that almost all cabs are covered for R=600m,
indicating good coverage.

0.1 0.2 0.3 0.4 0.5 0.6
coverage radius (in km)

5

6

7

8

9

10

av
er

ag
e 

co
ve

ra
ge

 (o
ut

 o
f 1

0)

Strategie Q - Coverage
Neural Predictor - Strategie Q'A - Coverage
Neural Predictor - Strategie Q'B - Coverage
Neural Predictor - Strategie Q" - Coverage

Figure 3: Taxis coverage by coverage radius

4.1 Disconnectivity
Figure 4 shows the average number of disconnections for strategies
Q, Q’A, Q’B, and Q". First, we note that disconnections decrease
as the coverage radius increases. It goes from around 70% discon-
nections to less than 10%. This makes sense because increasing the
radius increases the number of IRS candidates with the cab under
their coverage. Then we see that between 100 and 230m radius, the
three strategies Q’ and Q" are almost similar. At around 300m, the
Q" strategy performs slightly better than the Q’A and Q’B strate-
gies. The Q strategy performs better than the Q’ and Q" strategies.
These results can be explained by the fact that within a 200m radius,
there are few buses to cover cabs: 1 out of 2 cabs without a bus
(see figure 3). Since the strategies only make sense when there are
several candidates, i.e., for small lists, they produce practically the
same result. The Q’ and Q" strategies aim to retain the bus with the
highest future occurrence. In other words, the bus chosen as IRS1
may be in a blind zone and have no IRS2, or the cab may leave its
coverage for some time before returning. The dotted lines represent
the disconnection of strategies for a single hop. We can see that
there are more single-hop disconnections, whatever the value of
the coverage radius R. From 400 meters upwards, the difference is
more than 30%. This shows the usefulness of multi-hop for more
effective coverage.
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Figure 4: Taxis disconnection 1-2 Hops by coverage radius

4.2 Numbers of handovers
The notion of handover here refers to a change in the IRS. In the
case of two hops, a handover occurs when one of the two IRS
changes. Figure 5 represents, on average, the number of handovers
as a function of the coverage radius for the strategies for one and
two hops. The number of handovers is similar for a small coverage
radius and generally lower between 100 and 150meters. The reasons
for this are low coverage, with few IRS available, and, as a result, no
change. Then, this number increases for strategy Q and increases
and decreases for strategies Q’ and Q" as the radius increases. As the
radius increases, the number of candidate buses and connections
increases, and the handover phenomenon becomes more apparent.
But at a certain point, for strategies such as Q", Q’B, and even Q’A,
which aim to keep the same bus for as long as possible, increasing
the radius enables it to continue a little longer with the same IRS
bus, even if the trajectories start to diverge, hence the decrease after
a certain threshold. This is not the case with the Q strategy, which
chooses blindly.

The dotted curves represent one-hop strategies. For the Q’ and
Q" strategies, there are fewer handovers with the single hop than
with two, as there are half as many IRS in some cases. Finally, we
note that for the Q strategy, the number of hops has no impact
on the number of handovers. This means that the IRS changes
as much in one jump as it does in two due to the random draw.
Another aspect is the behavior of the strategies. The Q’B and Q"
strategies are relatively similar in one and two jumps. In addition,
there are always fewer handovers for these two-hop strategies, up
to a coverage radius of 400 meters, than for the single-hop Q’A
strategy.
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Figure 5: Average number of handovers by coverage radius

4.3 Connection duration
The trend is the opposite for connection duration, as shown in
figure 6, which illustrates the average length of time a cab stays
with the same IRS or IRS pair in the case of a double hop. The
connection duration is almost equal to 1 for the Q strategy. This
makes sense, given the number of handovers close to 100%. It’s
important to note that in addition to this separation of strategies,
which confirms the previous findings, connection duration is higher
with one hop than with two up to a radius of 400 meters and vice
versa beyond that. It’s easier to retain one IRS than two or more,
especially when coverage is low. The duration for how long a cab
can stay with the same pair of IRS also increases as the coverage
radius increases.

As for connectivity, the connection/disconnection curve increases/decreases
with the coverage radius. This is logical because as the coverage
area increases, a cab or bus is more likely to find an IRS bus to
cover it, depending on whether it’s a Level 1 or Level 2 election.
The number of handovers decreases with radius because the better
the radius, the greater the chance of always being covered by the
same IRS, even when moving. There is an exception for the Q strat-
egy, which gives a better connection rate and the same number of
handovers and connection duration for single-hop and double-hop.
It is also important to mention that a temporary loss of connectiv-
ity is not considered a handover, so there is no strict relationship
between the connection duration and handover criteria. However,
connectivity also influences the connection duration. Then there’s
a classification of strategies, with the Q" and Q’B strategies giving
better results than the Q’A strategy regarding the number of dis-
connections, handovers, and connection duration. Finally, and most
importantly, the impact of the double hop in increasing coverage
capacity should be noted.
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Figure 6: Average connection duration by coverage radius

4.4 Prediction quality
In this section, we compare the results obtained with the LSTM-
based Neural Predictor, which for each time slot predicts four posi-
tions for the cab corresponding to t+1, t+2, t+3, and t+4 with the
Perfect Predictor. The Perfect Predictor uses the actual positions
of the cabins as a prediction, allowing us to verify our model. The
LSTM predictor we use here [3] is not perfect and has an RMSE
of around 0.04 for testing. We, therefore, seek to determine how
sensitive our results are to prediction accuracy. The curves show
the results for each strategy Q’A, Q’B, and Q" in Perfect and Neu-
ral predictor for the number of handovers (figure 7) and average
connection duration (figure 8). The results show similar results
between the two Predictors. This can be explained by the fact that
the neural predictor used also has relatively good accuracy and that
we are considering short-term predictions.

4.5 Max First vs. SINR First
In wireless networks, some metrics are used to estimate signal
quality, such as RSSI (Received Signal Strength Indicator), SNR
(Signal-to-Noise Ratio), SINR (Singal-to-Interference plus Noise
Ratio), etc. In this section, we propose integrating SINR into the
IRS bus election. We propose to elect the bus with the best SINR
as IRS while always based on predictions and strategies. The SINR
is, therefore, calculated for each prediction, and the device with
the highest SINR is chosen as the IRS. However, optimizing the
SINR contradicts most of the performance criteria selected, for
instance, optimizing the number of handovers and connection time,
as choosing the candidate IRS with the best SINR at each stage does
not guarantee that the same IRS will be maintained. We therefore
tested two cases:
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Figure 7: Average number of handovers for Perfect and Neu-
ral predictors for the three strategies
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Figure 8: Average connection duration for Perfect and Neural
predictors for the three strategies

• Max First: First, we look at the bus most likely to appear
according to the prediction. Then, in the event of a tie, the bus
with the best SINR is chosen. This is theMaxFirst mechanism.

• Sinr First: In the second case, it’s the other way around.
The bus with the best current and future SINR is chosen,
and in the event of a tie, the number of occurrences of the

bus is used to determine the final result. This is the SinrFirst
mechanism.

We have tested these mechanisms for each strategy.
Figures 9, 10, and 11 show respectively the number of disconnec-

tions, the number of handovers, and the average connection time,
with little difference between the two mechanisms for both single
and double hops. This may be due to the way the SINR is calculated.
In this section, we have aggregated the SINRs, taking predictions
into account. The bus with the most occurrences is more likely to
be chosen if the SinrFirst strategy is also used.

0.1 0.2 0.3 0.4 0.5 0.6
coverage radius (in km)

3

4

5

6

7

8

9

10

av
er
ag

e 
co

ve
ra
ge

 (o
ut
 o
f 1

0)

Perfect Predictor - Strategie Q'A Max First - 2 Hops Connectivity
Perfect Predictor - Strategie Q'A Sinr First - 2 Hops Connectivity
Perfect Predictor - Strategie Q" Max First - 2 Hops Connectivity
Perfect Predictor - Strategie Q" Sinr First - 2 Hops Connectivity
Perfect Predictor - Strategie Q'A Max First - 1 Hop Connectivity
Perfect Predictor - Strategie Q'A Sinr First - 1 Hop Connectivity
Perfect Predictor - Strategie Q" Max First - 1 Hop Connectivity
Perfect Predictor - Strategie Q" Sinr First - 1 Hop Connectivity

Figure 9: Average connectivity for MaxFirst and SinrFirst
election for strategies Q’A and Q"

4.6 Impact of N
Another parameter impacting these results is granularity. In other
words, the number of zones in the study area. If N is small, the
zones are large, while the zones are small if N is large. A blind zone
corresponds to a rectangle of size L/N x l/N where l and L are the
dimensions of the study area.

Figures 12 and 13 show the average disconnection number for
a coverage radius of 100 and 600 meters, respectively. This num-
ber decreases as a function of N. This means that there are fewer
disconnections when the zones are small. This can be explained by
a higher probability of encountering an IRS in a non-blind zone.
So in the case of a larger blind-tagged area, all nearby buses are
susceptible to be blind IRS1 and may not have IRS2. Meanwhile, if
the zones are small, some of these buses may be in non-blind zones,
and the probability of having an IRS2 is higher.

The number of handovers increases as a function of N, especially
for a small radius (fig 14). A small radius and small area mean that
the coverage is small, and with alternating blind and grey spots,
there’s scope for changing IRS on level 2 IRS if there is any. As the
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Figure 10: Average numbers of handovers for MaxFirst and
SinrFirst election for strategies Q’A and Q"
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Figure 11: Average connection duration for MaxFirst and
SinrFirst election for strategies Q’A and Q"

radius increases (fig 15), the effect of granularity is less noticeable,
and results tend to stabilize but with more handovers generally for
a small radius. This may be due to the large number of handovers
from extended coverage.

All tests were performed with a maximum confidence interval
of approximately 10%.
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Figure 12: Taxis disconnection for R=100m by N
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Figure 13: Taxis disconnection for R=600m by N

5 CONCLUSION
In this paper, we proposed an approach combining mobile IRS and
multi-hop. We assumed the presence of blind zones to validate our
scenario and demonstrated the benefits of multi-hop to increase net-
work coverage. We then compared different IRS election strategies
based on the number of handovers and connection duration. The
results show the advantages of the multi-hop strategies we propose
to guarantee low numbers of disconnections. We also looked at
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Figure 14: Average number of handovers for R=100m by N
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Figure 15: Average number of handovers for R=600m by N

the evolution of different performance criteria as a function of the
coverage radius and zone size. Finally, we studied the effect of the
introduction of SINR on the choice of IRS.

ACKNOWLEDGMENTS
This work is part of the ongoing Ph.D. training supported by the
Partnership for Skills in Applied Sciences, Engineering, and Tech-
nology (PASET) - Regional Scholarship and Innovation Fund (RSIF).

REFERENCES
[1] Lorenzo Bracciale, Marco Bonola, Pierpaolo Loreti, Giuseppe Bianchi, Raul Am-

ici, and Antonello Rabuffi. 2014. CRAWDAD dataset roma/taxi (v. 2014-07-17).
Downloaded from. https://doi.org/10.15783/C7QC7M traceset: taxicabs.

[2] Zheng Chu, Pei Xiao, De Mi, Hongzhi Chen, and Wanming Hao. 2020. Intelligent
reflecting surfaces enabled cognitive internet of things based on practical pathloss
model. China Communications 17, 12 (2020), 1–16.

[3] Mohammed Laroui, Aicha Dridi, Hossam Afifi, Hassine Moungla, Michel Marot,
and Moussa Ali Cherif. 2019. Energy management for electric vehicles in smart
cities: A deep learning approach. 2019 15th International Wireless Communications
and Mobile Computing Conference, IWCMC 2019 (2019), 2080–2085. https://doi.
org/10.1109/IWCMC.2019.8766580

[4] Bifeng Ling, Jiangbin Lyu, and Liqun Fu. 2021. Placement Optimization and
Power Control in Intelligent Reflecting Surface Aided Multiuser System. 2021
IEEE Global Communications Conference, GLOBECOM 2021 - Proceedings. https:
//doi.org/10.1109/GLOBECOM46510.2021.9686030

[5] Shaobo Liu, Limin Xiao, Ming Zhao, Xibin Xu, and Yunzhou Li. 2020. Performance
Analysis of Intelligent Reflecting Surface in Multi-user MIMO Systems. 1575
(2020).

[6] Yihong Liu, Lei Zhang, Feifei Gao, and Muhammad Ali Imran. 2022. Intelligent
Reflecting Surface Networks With Multiorder-Reflection Effect: SystemModeling
and Critical Bounds. IEEE Transactions on Communications 70, 10 (2022), 6992–
7005. https://doi.org/10.1109/TCOMM.2022.3202212

[7] Maria Bustamante Madrid, Jeroen Famaey, and Filip Lemic. 2023. Intelligent Re-
flective Surface vs. Mobile Relay-supported NLoS Avoidance in Indoor mmWave
Networks. Institute of Electrical and Electronics Engineers (IEEE), 934–939.
https://doi.org/10.1109/globecom48099.2022.10000865

[8] Weidong Mei and Rui Zhang. 2021. Cooperative Beam Routing for Multi-IRS
Aided Communication. IEEE Wireless Communications Letters 10, 2 (2021), 426–
430. https://doi.org/10.1109/LWC.2020.3034370

[9] WeidongMei and Rui Zhang. 2022. Multi-BeamMulti-Hop Routing for Intelligent
Reflecting Surfaces Aided Massive MIMO. IEEE Transactions on Wireless Commu-
nications 21, 3 (2022), 1897–1912. https://doi.org/10.1109/TWC.2021.3108020

[10] Weidong Mei, Beixiong Zheng, Changsheng You, and Rui Zhang. 2022. Intel-
ligent Reflecting Surface-Aided Wireless Networks: From Single-Reflection to
Multireflection Design and Optimization. Proc. IEEE 110, 9 (2022), 1380–1400.
https://doi.org/10.1109/JPROC.2022.3170656

[11] Hehao Niu, Zheng Chu, Fuhui Zhou, Cunhua Pan, Derrick Wing Kwan Ng, and
Huan X. Nguyen. 2022. Double Intelligent Reflecting Surface-Assisted Multi-User
MIMO Mmwave Systems With Hybrid Precoding. IEEE Transactions on Vehicular
Technology 71, 2 (2022), 1575–1587. https://doi.org/10.1109/TVT.2021.3131514

[12] Agency of the Municipality of Rome. [n. d.]. Public Transport Data (General
Transit Feed Specification) of the Municipality of Rome. https://dati.comune.roma.
it/catalog/it/dataset/c_h501-d-9000

[13] Darian Pérez-Adán, Óscar Fresnedo, José P. Gonzalez-Coma, and Luis Castedo.
2021. Intelligent reflective surfaces for wireless networks: An overview of appli-
cations, approached issues, and open problems. Electronics (Switzerland) 10 (10
2021). Issue 19. https://doi.org/10.3390/electronics10192345

[14] Adel Mounir Said, Mohammed Laroui, Chérifa Boucetta, Hossam Afifi, and Has-
sine Moungla. 2022. Optimal Mobile IRS Deployment with Reinforcement Learn-
ing Encoder Decoders. In GLOBECOM 2022 - 2022 IEEE Global Communications
Conference. 1966–1971. https://doi.org/10.1109/GLOBECOM48099.2022.10001338

[15] Xiaodan Shao, Changsheng You, Wenyan Ma, Xiaoming Chen, and Rui Zhang.
2022. Target Sensing with Intelligent Reflecting Surface: Architecture and Perfor-
mance. IEEE Journal on Selected Areas in Communications 40 (7 2022), 2070–2084.
Issue 7. https://doi.org/10.1109/JSAC.2022.3155546

[16] Yousef N. Shnaiwer, Nour Kouzayha, Mudassir Masood, Megumi Kaneko, and
Tareq Y. Al-Naffouri. 2022. Multi-Hop Task Routing in UAV-Assisted Mobile
Edge Computing IoT Networks with Intelligent Reflective Surfaces. IEEE Internet
of Things Journal (2022), 1–1. https://doi.org/10.1109/JIOT.2022.3228863

[17] Kevin Weinberger, Robert-Jeron Reifert, Aydin Sezgin, and Ertugrul Basar. 2023.
RIS-enhanced Resilience in Cell-Free MIMO. InWSA & SCC 2023; 26th Interna-
tional ITG Workshop on Smart Antennas and 13th Conference on Systems, Commu-
nications, and Coding. VDE, 1–6.

[18] Helin Yang, Zehui Xiong, Jun Zhao, Dusit Niyato, Liang Xiao, and Qingqing
Wu. 2021. Deep Reinforcement Learning-Based Intelligent Reflecting Surface for
Secure Wireless Communications. IEEE Transactions on Wireless Communications
20 (1 2021), 375–388. Issue 1. https://doi.org/10.1109/TWC.2020.3024860

 

90

https://doi.org/10.15783/C7QC7M
https://doi.org/10.1109/IWCMC.2019.8766580
https://doi.org/10.1109/IWCMC.2019.8766580
https://doi.org/10.1109/GLOBECOM46510.2021.9686030
https://doi.org/10.1109/GLOBECOM46510.2021.9686030
https://doi.org/10.1109/TCOMM.2022.3202212
https://doi.org/10.1109/globecom48099.2022.10000865
https://doi.org/10.1109/LWC.2020.3034370
https://doi.org/10.1109/TWC.2021.3108020
https://doi.org/10.1109/JPROC.2022.3170656
https://doi.org/10.1109/TVT.2021.3131514
https://dati.comune.roma.it/catalog/it/dataset/c_h501-d-9000
https://dati.comune.roma.it/catalog/it/dataset/c_h501-d-9000
https://doi.org/10.3390/electronics10192345
https://doi.org/10.1109/GLOBECOM48099.2022.10001338
https://doi.org/10.1109/JSAC.2022.3155546
https://doi.org/10.1109/JIOT.2022.3228863
https://doi.org/10.1109/TWC.2020.3024860

	Abstract
	1 Introduction
	2 Related Work
	3 Two hops IRS
	3.1 Settings
	3.2 Strategies

	4 Results
	4.1 Disconnectivity
	4.2 Numbers of handovers
	4.3 Connection duration
	4.4 Prediction quality
	4.5 Max First vs. SINR First
	4.6 Impact of N

	5 Conclusion
	Acknowledgments
	References



