i:;l?é electronics

Review

Hybridization of Learning Techniques and Quantum Mechanism
for I1oT Security: Applications, Challenges, and Prospects

Ismaeel Abiodun Sikiru

and Chun-Ta Li 5*

check for
updates

Citation: Sikiru, I.A.; Kora, A.D.; Ezin,
E.C.; Imoize, A.L,; Li, C.-T.
Hybridization of Learning Techniques
and Quantum Mechanism for IIoT
Security: Applications, Challenges,
and Prospects. Electronics 2024, 13,
4153. https://doi.org/10.3390/
electronics13214153

Academic Editor: Costas

Psychalinos

Received: 12 September 2024
Revised: 17 October 2024
Accepted: 18 October 2024
Published: 23 October 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

3 1 4

, Ahmed Dooguy Kora °"/, Eugene C. Ezin -/, Agbotiname Lucky Imoize

Institute of Mathematics and Physical Sciences, Université d’Abomey-Calavi, Cotonou 04 BP 1525, Benin;
ismaeel.as@unilorin.edu.ng (I.A.S.); eugene.ezin@uac.bj (E.C.E.)

Department of Information Technology, University of Ilorin, Ilorin 240103, Nigeria

Ecole Superieure Multinationale des Telecommunications (ESMT), Dakar 13500, Senegal;
ahmed . kora@esmt.sn

Department of Electrical and Electronics Engineering, Faculty of Engineering, University of Lagos,
Akoka, Lagos 100213, Nigeria; aimoize@unilag.edu.ng

Bachelor’s Program of Artificial Intelligence and Information Security, Fu Jen Catholic University,

510 Zhongzheng Road, New Taipei City 242062, Taiwan

*  Correspondence: 157278@mail. fju.edu.tw

Abstract: This article describes our point of view regarding the security capabilities of classical
learning algorithms (CLAs) and quantum mechanisms (QM) in the industrial Internet of Things (IloT)
ecosystem. The heterogeneity of the IloT ecosystem and the inevitability of the security paradigm
necessitate a systematic review of the contributions of the research community toward IIoT security
(IToTsec). Thus, we obtained relevant contributions from five digital repositories between the period
of 2015 and 2024 inclusively, in line with the established systematic literature review procedure. In
the main part, we analyze a variety of security loopholes in the IIoT and categorize them into two
categories—architectural design and multifaceted connectivity. Then, we discuss security-deploying
technologies, CLAs, blockchain, and QM, owing to their contributions to IloTsec and the security
challenges of the main loopholes. We also describe how quantum-inclined attacks are computationally
challenging to CLAs, for which QM is very promising. In addition, we present available IloT-centric
datasets and encourage researchers in the IIoT niche to validate the models using the industrial-
featured datasets for better accuracy, prediction, and decision-making. In addition, we show how
hybrid quantum-classical learning could leverage optimal IloTsec when deployed. We conclude with
the possible limitations, challenges, and prospects of the deployment.

Keywords: classical learning algorithm; quantum mechanism; industrial Internet of Things; IloTsec;
quantum classical learning; multifaceted connectivity; architectural design

1. Introduction

The Internet of Things (IoT) can be defined as a system that incorporates intelligent
devices for Internet-based intra- and intercommunication [1]. The IoT environment com-
prises interdependent tools that are capable of collecting, processing, storing, transmitting,
receiving, and making decisions based on the available data. These features enhance smart
monitoring and controlling of the environment and devices. With the penetration of IoT, it
is predicted that the technology will make a subtle economic impact to the tune of USD
11.1 trillion by 2025 [2]. Interestingly, the needs of consumers have always been the target
of developed IoT systems, which have, therefore, enhanced the adoption of IoT in many
industrial applications [3].

The integration of IoT into industrial settings has witnessed both gradual and multi-
layered approaches in the auto industry, manufacturing, smart city, and smart healthcare,
among others [4-8]. The two-factor approaches are borne out of the heterogeneity and
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interdependence properties of the industrial setting. Thus, as the gradual process trends
from industrial generation 1.0 to 4.0, the inherent layer evolves more. The era of Industry
1.0 was toward the end of the 18th century, precisely the 1780s. The era featured the use of
primitive resources such as water, steam, and fossil fuel to generate mechanical power. In
the 1870s, a metamorphosis to Industry 2.0 was executed as a result of the generation of
electrical energy with the use of assembly lines for mass production. The first DC motor
was, in the era, assembled by Zenobe Gramme. In Industry 3.0, use of electronics and
information technology (IT) caused a huge evolution as automation became integrated
into production industries, thus setting the pace for smart industry. It was in the 1970s
that the first programmable logic circuit (PLC) was invented. Industry 4.0 features a set
of emerging technologies such as IoT, cloud computing, and artificial intelligence (AI).
These technologies integrate smart technology in Industry 3.0 into cyber-physical systems
(CPS) to actualize smart CPS (SCPS). The concept of SCPS is the real-time interface be-
tween the virtual and physical worlds. The current industrial revolution, i.e., Industry 4.0,
has recorded, and is still recording, subtle technological, industrial, societal, and human
advancement. However, the potential shift toward better consideration of parallel ma-
chine intelligent machines (PMIM) in the industrial framework, workers’ ergonomics,
and societal transformation endears the preparation for Industry 5.0. [9,10]. The dy-
namism of the Industrial Revolution and its effects on gross domestic product is presented
in Figure 1.

Interestingly, the integration of emerging technologies, such as IoT, in Industry 4.0
gives rise to industrial IoT (IloT). IIoT can then be defined as the deployment of IoT
technology, including sensors, actuators, controllers, and smart systems in an industrial
setting to produce hi-tech services with little or no human intervention [11,12]. In addition,
IIoT is a conglomerate of intelligent connections, instantaneous information processing,
and synergic monitoring for reliable and optimized qualitative industrial products [13].
Based on its transformative features, IIoT is described as the only organ for the survival of
21st-century industrial operations [14]. Hence, the IIoT ecosystem, as depicted in Figure 1,
accounts for spontaneous growth in the world economy and instantaneous control of the
production process [15].
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Figure 1. Progressive Trends from Industry 1.0 to Industry 5.0 with Corresponding Effects on
GDP [15].

Despite the recorded exponential development in the supply chain, monitoring system,
management, and manufacturing process, the technology-aided industrial ecosystem, IIoT,
is still being challenged by cyberattacks [3,16-18].

The cyberattack effect on the IIoT ecosystem is found, in the literature, to be aided by
the primary architectural focus of industrial machines and devices. In the study of [19],
the authors discovered that industrial machines are designed for functionality rather than
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security. The architectural design’s effect has depicted several assaults in the industrial
machines and consequently opens disruptive vulnerabilities in IloT communication proto-
col, operational mismanagement, device compromise, denial of service (DoS), and even
buffer overflow [11]. It is, therefore, noteworthy to state that the cyber-challenges in the
IIoT ecosystem could be broadly divided into two categories—information technology
(IT) and operational technology (OT) challenges. While IT challenges have a drastic ef-
fect on the data-centric computing part of IloT, OT challenges make the monitoring of
events, processes, and devices dormant [20]. Hence, in recognition of the sensitivity of
OT systems, many research studies in smart logistical processes, industrial techniques,
and cities advance their security defenses toward OT challenges more than its counter-
parts [8]. The objectives and peculiar vulnerabilities of each layer of IT/OT convergence
architecture [21,22] are depicted in Table 1.

Table 1. IT/OT layers with their peculiar attacks.

IToT Architecture Layers Objectives Peculiar Vulnerabilities
It houses sensors, actuators, transmitters, and embedded Reverse engineering,
Layer 1 devices. It is the lowest (physical) layer of OT and deals eavesdropping, brute force,
with physical industrial processing. and malware
T B : . : :
60
£ & This layer .commu.rucafces V\{lth the Physmal la}.ler..The Replay attacks, MITM attacks,
2= Layer 2 communication devices in this layer include a distributed I
£ 50 brute force, and sniffing
85 ~= control system, PLC, and gateways.
Q)
OF It is the topmost layer of OT that collects and shares the .
. . . . IP spoofing, malware,
Laver 3 incoming data from the preceding OT layers. The devices data sniffine. and
y for this task include SCADA, HMI, control rooms, and ng, al
. . data manipulation
operation stations
It is the bottom IT layer that collects incoming data from Phishing, SQL injection,
o o L 4 the topmost OT layer for storage at the remote data 1 DNS poisoni d
g & ayer . o malware, poisoning, an
= 3 centers. Layer 4, thus, supports office applications,
T =~ . ; . brute force
£ Sk intranet, mail, and web services.
= oo
‘E 9 It is the top IT layer for strategic business planning using DoS attack, malware,
= Layer 5 cloud computing, data analytics, the Internet, mobile password, side channel attack,

devices, and smart devices. and MITM

Eventually, the complex architectural-driven features of IloT make it practically un-
realistic to have a prediction of 100 percent triads of security. Thus, the industry and
people encounter open challenges such as loss of data, privacy and integrity, data theft,
insecure communication lines, DoS, and industrial non-sovereignty, among others [23]. In
the same vein, Otoum et al. [24] identified the attackers’ focus on privacy and security of the
industrial ecosystem as an intelligent devices-centered vulnerability. For instance, a case of
intruders’ sovereignty was recorded in a 2018 investigation of the Winter Olympics via the
vulnerability in the reciprocal endorsement and key-exchange mechanism. Though an IloT
environment was developed to manage the illumination and ventilation at the Sochi arena,
unfortunately, about 17,823 smart building network gadgets and 78,000 supervisory control
and data acquisition (SCADA) devices had illegitimate access to the network without any
security safeguards [14].

In recognition of the assaults in the IIoT ecosystem, the research community has given
more attention to the security of the IloT (IloTsec) ecosystem through various approaches.
Senapati and Rawal [7] highlighted emerging smart technologies that have been adopted
in different capacities against assaults in the IIoT ecosystem. The technologies include
Al [25-27], machine learning (ML) [9,26,28-32], quantum computing (QC) [4,33-37], multi-
factor authentication (MFA) [38—40], and edge technologies [41] for sustainable industrial
manufacturing and smart factories in the digital age. Hence, our contributions to the
knowledge in this paper are summarized as follows:
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We surveyed the security challenges of IIoT and discovered that they could be broadly
divided into two categories: architectural design and multifaceted connectivity.

We reviewed how learning techniques have been deployed in the IIoT ecosystem to
predict, identify, and mitigate the launch of attacks against a secure IloT environment.
Also, as we are in a post-quantum era, we conducted an in-depth analysis of how quan-
tum mechanisms have advanced IloTsec and examined the limitations of quantum
deployment in the IIoT ecosystem.

Based on the inherent features of learning algorithms and quantum principles, we
highlighted a few prospects for hybridizing the two techniques to realize a secure
IIoT ecosystem.

In conclusion, we advocated that IIoT-centric datasets should be used for validation
as long as the model is tailored toward IloTsec and presented IloT-centric datasets
with their distinguished features.

The remaining part of the work is structured as follows: Section 2 elaborates on the

review approach of the study, where the research questions are explicitly spelled out. Our
key findings are presented in Section 3. In Section 4, we highlight the challenges, limitations,
and prospects of the study. Finally, the concluding remark is made in Section 5.

2. Review Approach

In this review study, we adopt the approach of [42], which is accepted as a structured

form for conducting a systematic literature review (SLR). Although we are not oblivious
to other literature review techniques [43,44]. However, to the best of our knowledge, the
former is widely used, systematic, easy to adopt, and more informative to the readers.
Hence, Kitchenham and Charters [42] operate on the principle of planning, conducting,
and reporting the review. These phases promise comprehensiveness in carrying out SLR.
Each of the three phases encompasses several activities. In a simplified outlook, we present
the methodological process flow of this study in Figure 2.
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Figure 2. The methodological flow of the study.

2.1. Planning the Review Phase

This phase serves as the bedrock for the subsequent two phases because a poorly
planned research study is research in futility. Moreover, this phase has three different
activities to achieve the study’s aim. The activities are the identification of study needs,

development of a review protocol, and evaluation of the protocol.
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2.2. Conducting the Review Phase

This phase is the second stage of the adopted SLR methodology. It serves as the
nucleus of the process flow. The major activities of SLR are carried out in the “conducting
the review phase”. Hence, this middle phase consists of six important activities to actualize
the objectives of SLR. The activities are presented below.

2.2.1. Research Questions (RQs)

The choice of objective-driven RQs is paramount to achieving the research’s objectives.
Hence, we identified, examined, and presented a set of research questions related to our
review study. The following are our developed RQs:

e  RQI1: What are the security challenges of IloT?

The objective of RQ1 is to identify and broadly classify the security challenges in
an IIoT ecosystem, as well as the corresponding diverse security approaches by the
research community.

e  RQ2: What kinds of learning algorithms are being deployed toward the security of lloT?

The objective of RQ2 is to determine the extent to which ML, deep learning (DL),
and blockchain techniques have changed the narratives of security challenges in the IloT
ecosystem. This includes a set of evaluating datasets used by the researchers and the
bottlenecks in the deployment of the algorithms.

e RQ3: What security enhancement could the quantum mechanism offer the
IIoT ecosystem?

The objective of RQ3 is to advocate for an alternative security measure, such as
quantum mechanisms, in the IloT ecosystem through the state-of-the-art (SOTA).

e  RQ4: Is hybrid quantum-classical more efficient against IloT security challenges than
a single technique deployment?

The objective of RQ4 is to determine a better deployable technique to combat the
increasing security menace in the IloT environment.

2.2.2. Search Strategy

To actualize as many research works as possible in this niche, after the development
of RQs, we followed acceptable laid-down principles in the search strategy. We were
able to identify suitable search terms from the RQs. Then, we formulated query strategy
as (Machine learn* OR ML) AND (Quantum Machine learn* OR QML OR Quantum
mechanics*) AND (Industrial Internet of Thing* OR Industrial IoT OR IIoT) OR (IloTsec
OR Industrial IoT sec). This is followed by querying different digital repositories using the
formulated search terms. Below are the selected digital libraries queried for our research
work hunt:

Google Scholar

IEEE Xplore digital library
ScienceDirect
SpringerLink

ACM Digital Library

2.2.3. Study Selection

While fetching related studies in the five selected digital repositories, we filtered
the collections using inclusion/exclusion criteria to reckon with only relevant works in
peer-reviewed journals and conference papers. The process of selecting final works for this
study is thus explained:

e  Step 1: All the non-English written studies were removed from the collection at the
collation stage.
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Step 2: A preliminary study that focused on the title and abstract of the retrieved
documents in Step 1 was conducted. At this stage, the non-consistent works to
the defined RQs were excluded. Also excluded at this stage are the non-accessible
full texts.

Step 3: Here, the filtered documents were fully read. Then, three sets of works were
removed based on the following:

1. works that do not discuss any security-deployed techniques

2. works that focused on other techniques different from the scope of this study and

3.  duplicate works that were found either in different digital libraries or appeared
in conferences and journals

Conference papers were discarded to deduplicate dual appearances. This is because we

discovered that such conference papers became extended in quality and comprehensiveness
in their journal outlet [45]. Figure 3 shows the flow of study selection.

Figure 3. Process flow showing the study selection.

2.2.4. Quality Assessment Activity (QAA)

The quality of the included articles for review was thoroughly assessed here. This is to

avoid bias in our study. As a result, the criteria set by [46] were refined. Then, we defined
our five quality assessment criteria to ensure the integrity of the selected articles as follows:

QAAT1: Recognition of the study’s objectives

QAAZ2: Well-defined learning techniques and/or quantum approach for IloTsec
QAAS3: Justifiable designed or deployed techniques for IIoTsec

QAA4: Admissible evaluation report

QAADB: Finally, contribution to knowledge
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2.2.5. Data Extraction and Monitoring Activity (DEMA)

At this level, the final documents were analyzed to acquire answers to the raised
RQs. This activity was aided by the thorough query of five digital repositories. Hence,
using DEMA, we extracted from each document ten pieces of information: authors, au-
thors” information, titles of the papers, journal sources, years of publication, publica-
tion types, available datasets for IloTsec, analysis features, adopted methodologies, and
performance metrics.

2.2.6. Data Synthesis

In a bid to synthesize the information extracted from the filtered papers, we aggregated
RQs-answering evidence using different approaches. After collating the data, we analyzed
it and presented the results using a narrative synthesis technique of tabulation. The tabular
form makes the result informative for suitable decision-making.

3. Key Findings

In this section, we present the findings of this review study. The results relating to each
research question are concisely discussed here in detail. We finally obtained a total of 100
studies revolving around the deployment of learning techniques and quantum mechanisms
toward the security of industrial IoT. In addition, the presentation of the key findings in this
section is guided by our highlighted quality assessment activity in Section 2.2.4. Therefore,
we have four major subsections presented here, and each subsection addresses a typical
RQ accordingly.

3.1. RQ1: What Are the Security Challenges of 110T?

As briefly introduced in Section 1 and highlighted in Table 1, industrial IoT is grossly
challenged with several attacks despite its promising dominance in the 21st century and
beyond [14]. The security challenges in the IIoT ecosystem have been traced in the literature
to various loopholes. However, in this work, we classify the main loopholes threatening the
secure operation of IloT into two—architectural design and multifaceted connectivity. The
objective of this RQ is to determine the dual challenges and the diverse security approaches
the challenges have attracted from the research community.

3.1.1. RQ1-1: Architectural Design Loopholes of IloTsec

According to Aguru et al. [47] and Perwej et al. [19], IloT would remain insecure
for operation until the architectural structure of the system is re-engineered. This is
because the system is built with the main intention of functionality rather than the secure
dynamicity of the system. Thus, the loophole remains persistent and becomes a backdoor
access to the intended attacks. For instance, IloT uses the SCADA system as a monitoring
tool for all data collected from network-dependent multiple devices [47]. Meanwhile,
Modbus technology, one of SCADA’s most commonly used protocols, operates using serial
communication on a master—slave-based configuration. However, it lacks the triads of
security—confidentiality, integrity, and availability—plus authentication [48]. As a result
of the identification deficiency of an unauthorized slave-master IP address within the
SCADA network [11].

Furthermore, the pioneer cyberattacks on SCADA systems can be traced back to 1982,
with a massive explosion occasioned by the trojan effect on the Trans-Siberian pipeline [49].
Since then, the weakness of SCADA has been continuously exploited by intruders. In
2010, Stuxnet targeted PLCs of Iran’s gas pipeline (GP) and power plants, which eventually
destroyed 984 centrifuges in a uranium enrichment plant. In 2014, a BlackEnergy trojan
was created for the SCADA system. This worm traversed in a Microsoft Word document,
which devastated several media and energy firms, mining industries, railways, and airports
in Ukraine. In 2015, several hours of blackout were experienced when the Kyiv power
distribution company was disconnected from its 30 substations for three hours through
BlackEnergy 3. Also, in 2017, another malware, TRITON, intrusively recoded some unique
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PLCs of the SCADA system into a failed state. This failure caused a sudden shutdown
of a Saudi Arabian petrochemical processing plant. In addition, Kaspersky’s products
experienced a SCADA assault in 2016—an attack that relegated almost 39.2% of Kaspersky-
secured industrial machines [50].

Eventually, the “success” record of vulnerable SCADA devices becomes accountable
to the threats on the entirety of industrial processes [51]. As a result, the authors in [52]
proposed an ensemble of deep belief networks (DBNs) algorithms and support vector
machines (SVM) to checkmate architectural intrusions in SCADA networks to safeguard
industrial control systems (ICSs). Considering the adverse consequences of architectural
design loopholes, Huang et al. [52] designed an automatic architecture of convolutional
neural networks (CNNs) based on differential evolution for intrusion detection systems
(IDS) in ICSs. The proposed DL-IDS was evaluated using two intrusion detection datasets
for ICS. The findings depicted acceptable performance results for threat detection in the
ICSs. Moreover, Rao et al. [53] identified access control leakage of SCADA, therefore
making supervisory control management, role engineering, and assignment propagation
deficient. To, therefore, ensure privacy and users’ access to resources in a SCADA-enabled
IIoT ecosystem, a mapping framework of multilayer feedforward artificial neural network
(ANN) and extreme learning machine (ELM) was proposed in [53]. The finding showed
that MLP has better accuracy compared to the ELM mode, though the latter is more
time-efficient in its deployment.

Similarly, soft strict operational guidelines for the emerging “smart” deployments into
the IIoT ecosystem are another factor for the security shortcomings in IIoT devices. IIoT
devices become open to several assaults due to uncensored cyber data and devices [23,54].
In addition, sensors’ positioning in a perception layer is also identified as an architectural
design loophole in an IloT environment. In the work of Ghorpade et al. [36], the authors
discovered a high level of signal attenuation in an IloT environment due to the topological
positioning of sensors and the resource-constraint of IIoT devices. Thus, the recommenda-
tion proposed in the study is to design an appropriate topology to ensure network coverage
and instantaneous connectivity. Moreover, Sikiru et al. [55] showed how security challenges
the architectural design in emerging wireless communication systems like IIoT. To combat
the effect, the authors proposed a boundary technique. They implemented its efficiency
at the physical layer to decry delay and signal attenuation occasioned by the off-zone
positioning of sensors.

3.1.2. RQ1-2: Multifaceted Connectivity Loopholes of IloTsec

It is noteworthy to state that the reality of IIoT dominance over traditional indus-
trialization is based on the evolution of IoT and increasing emerging technologies. As a
result, IloT contains abstraction properties of IoT such as open connectivity, heterogeneity,
resource constraint, big data generation, real-time processing, and scalability [56-58]. These
properties open the IloT ecosystem to greater connectivity challenges. On that discovery,
Valeske et al. [59] showed the rate at which the IloT ecosystem is more susceptible to
vulnerability as a result of its openness to message queue telemetry transport (MQTT),
Modbus TCP, cellular networks, Long-Range Radio Wide Area Network (LoRaWAN),
and other TCP/IP-based communication protocols. Additionally, all components in an
IIoT ecosystem are Internet operational for seamless intercommunication between various
nodes, devices, and systems, which eventually subject storage and sharing to centralized
servers. However, the operating costs, delays, and possible exposure to security risks are
the fundamental challenges of the centralized architecture [60,61].

Such exposure to security risks in an IIoT ecosystem is owed to the multifaceted
connectivity (MFC) of IloT devices [62]. Hence, the security and reliability of the systems
become an integral concern. By such consideration, the authors [63] identified the scenario
as a CPS-based security challenge that must be urgently identified for prevention. Also,
in [6], the scenario is termed industrial CPS-inclined assault, and the authors proposed
distributed data storage and management-enabled technology to curtail the effect of MFC
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challenges of IloT. Meanwhile, the study presented by Chawla and Mehra in [64] is ob-
served applicable to this security challenge. The authors designed a detection model with
CNNs, recurrent neural networks (RNNs), and their variants to defend against cyberat-
tacks occasioned by MFC. In the model, CNN was used to extract local attributes, which
eventually became inputs to the gated recurrent units (GRU) layer.

In addition, MFC-tailored assault is also detectable in IloT smart devices. This portrays
more risks to the IloTsec ecosystem due to the physical layer at which most of these devices
are, coupled with the state of device communication [55]. This understanding, therefore,
inspired [3] to design a smart contract token-based architecture comprising a token issue
contract (TIC), user register contract (URC), and manage contract (MC), for synergetic
supervision and management of IIoT ecosystem’s events against MFC-like challenges. In
the study [65], diverse connectivity of the smart machine operation cycle, better referred to
as MFC, accounts for time-lag errors in productivity. A proposal of Operation-Constrained
Process Control (OCPC) was instead introduced into the IIoT ecosystem to identify time
lags and errors in production under the guise of repeated training-informed-multi-sensor
knowledge updates. The experimental analysis showed the efficiency of OCPC.

3.2. RQ2: What Kinds of Learning Algorithms Are Being Deployed Towards the Security of IIoT?

In recourse to the identification of the main loopholes of IloTsec in Section 3.1, tech-
niques such as ML and DL have become an important approach to tame the security risks,
in recognition of their successful efficiency in similar studies. And for the fact that the secu-
rity challenges are in two modes—active and asleep, the corresponding approach should be
detective and preventive, accordingly [49]. Thus, IDSs are, in general, helpful to signal alert
at the potential attempt of an intruder into network data flow [45], though an intrusion
prevention system (IPS) proves better as it preempts the attacks and subsequently prevents
their occurrence [1]. Thus, both are essentially cybersecurity approaches, especially for
the guard of the IIoT ecosystem. For instance, ML-based IDSs were formerly challenged
by the passive mode of intrusion, in which the discovery of assault awareness is likely
to remain obscure. Then, the accuracy and precision rate at which ML algorithms detect
such anomalies distinguish it from other IDSs. Such a feat has thus made ML algorithms
deployable in many fields of cybersecurity [30,66-69]. Interestingly, ML algorithms have
attracted the attention of the research community in IIoT for their sensitivity and sustenance
to the living economy [30-32,48]. Based on this background, we present three techniques
mostly deployed toward IloTsec in the literature as RQ2-1.

3.2.1. Machine Learning-Based Technique

In the study of Guezzaz et al. [9], the authors present an ML-IDS-based framework for
detecting misuse and anomaly detection for Edge-Based IloTsec. K-nearest neighbor (KNN)
and Principal Component Analysis (PCA) techniques were evaluated on NSL-KDD and
Bot-IoT datasets. While KNN was adopted to improve accuracy for admirable decisions,
PCA was used for an enhanced feature engineering and fitting process. The model had a
better performance result on the NSL-KDD dataset, that is, 99.10% accuracy, 98.4% detection
rate, and a 2.7% false alarm rate (FAR). In addition, the authors in [70] also proposed a KNN
algorithm for intrusion detection in the IloT ecosystem. To reduce computation complexity
and speed up processing time, PCA, univariate statistics, and genetic algorithms (GA)
were selected for feature engineering. The model was validated with a Bot-IoT dataset
with an accuracy rate of 99.99%. Another study by Ruiz-Villafranca et al. [62] identified a
increasing number of emerging technologies and their hybridization in the IloT ecosystem
as a direct proportionate to threats and vulnerabilities. The authors therefore proposed an
ML-boosted tree algorithms-based smart vulnerability detector. The experimental result
revealed the efficiency of the detector as it recorded a mean efficiency of 95%-99% in the F1
score metric.

Gaber et al. [31] implemented two bioinspired-based feature selection algorithms—
particle swarm optimization (PSO) and bat algorithm (BA)—toward the reduction in
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computational time and FAR while also advancing the detection rate of attacks in an IIoT
ecosystem. Three weak learners were validated with the WUSTL-IIOT-2021 dataset. Conse-
quently, Random Forest (RF) had the best values in performance metrics, which therefore
makes hybridization with BA the best model for the study. From another perspective,
Abosata et al. [1] argued that in a heterogeneous environment of IoT, like industrial IoT,
security of routing protocol for low-power and lossy networks (RPL) remains paramount.
Unfortunately, most of the present IDS approaches are deficient in identifying novel RPL
assaults. Hence, the authors proposed a federated-transfer-learning-assisted customized
distributed IDS (FT-CID) model to identify RPL in such an environment. The model has
an accuracy of 85.2% in detecting RPL intrusions. The model also proved better when
compared with logistic regression (LR), multilayer perceptron (MLP), and CNN-based
RPL-IIoT IDS with accuracies of 56.12%, 58.04%, and 74.89%, respectively. However, the
authors did not consider the intrusion behaviors of the intruders, as expected to enhance
the study, based on the features of FT-CID.

3.2.2. Deep Learning-Based Technique

Likewise, Diro and Chilamkurti [71] implemented a long short-term memory (LSTM)
algorithm to checkmate the discovered DoS attacks in a distributed fog environment of
an IIoT firm. Before the deployment, the firm had been challenged with an attenuated
network performance and inefficiency of the network entities. The proposed technique was
validated with two datasets—ISCX and AWID. When its performance was compared with
the LR algorithm, the proposed technique had better accuracies of 99.91% and 98.22% on
ISCX and AWID datasets, respectively, as well as acceptable precision of attacks’ detection.
However, LR has a record of shorter training times than the LSTM technique. Additionally,
Guizani and Ghafoor [72] combined two DL algorithms, RNN and LSTM, as IDS to address
brute force attacks. DL algorithms were used for malware detection, while network
functions virtualization (NFV) technology was adopted as malware diffusion resistant
in a heterogenous IoT ecosystem. The authors validated the proposed technique using the
UNSW-NB15 dataset.

Similarly, Khan et al. [73] implemented an LSTM autoencoder to uniquely distinguish
several malicious actions and reduce false alarms in IloT-driven IICS networks. GP dataset
was collected for anomaly detection in IICS networks, while the UNSW-NB15 dataset was
for anomaly detection from exterior networks. The malicious actions discovered in the
ecosystem include DoS, reconnaissance, exploits, fuzzers, and NMRI. Accuracy values of
97.95% and 97.62% were achieved for GP data and the UNSW-NB15 dataset, respectively.
The recurrence of DoS, DDoS, and botnet attacks in an IIoT ecosystem became more of
a concern in the work of Mudassir et al. [74], which, therefore, inspired the authors to
proffer security remedies using hybrid DL algorithms consisting of RNN-LSTM, RNN-
GRU, and ANN. Meanwhile, the three models have a low-performance percentage of
recall and precision in classifying the assaults with a smaller number of instances until an
under-sampling of the majority class was carried out. Of the models, ANN achieved the
highest accuracy performance of 99%, while RNN-GRU was able to excellently detect DoS
and DDoS attacks targeting HTTP protocol, even with minimal samples. All three models
were validated with the Bot-loT dataset.

Moreover, the hybrid approach of ML and DL techniques has been explored several
times to identify and mitigate cyberattacks in IloT networks. Soliman et al. [75] conceived
the idea and implemented it. The authors henceforth considered ML-based IDSs such as
ensemble bagging, decision tree (DT), and KNN for attack prediction and classification. For
the precise identification of the attacks in the IloT environment, DL-based approaches such
as LSTM, bidirectional LSTM, and GRU were trained to identify the cyber-attacks. SVD
was employed for feature engineering while SMOTE was used to address imbalanced data
challenges. The study was evaluated on the ToN-IoT dataset for binary and multiclass clas-
sification. In addition, Jayalaxmi et al. [76] also proposed a PIGNUS model—a hybrid AE
and Cascade Forward Back Propagation Neural Network (CFBPNN) algorithms—against
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zero-day vulnerabilities in an IIoT ecosystem. The proposed technique was validated with
five publicly available datasets. The obtained result revealed an accuracy of above 95% and
a zero percent false rate in detecting multi-class attacks. Meanwhile, in 2022, the work [77]
implemented an IDS using three techniques CFBPNN, CFS, and NARX against botnet
attacks. Unlike the autoencoder (AE) used for feature selection and improved detection rate
performance in 2023, CFS was used. While NARX was utilized as a time-series technique
to identify high-impactful elements in the target class. The proposed technique was also
tested on different five datasets—INF-UNSW-NB15, NF-CSE-CIC-IDS2018, NF-ToN-IoT,
and NF-BoT-IoT for validation. When the performance outcome was compared with
various existing NN models, the proposed technique was better in accuracy, F1 score,
and precision.

Also, as discussed in Section 3.1.2, safe data transmission is an issue in an IIoT ecosys-
tem due to its multi-nodal architecture. Therefore, to ensure safety and strict coordination,
and to deter key leakages, Qi et al. [78] proposed a ciphertext policy attribute-based en-
cryption mechanism scheme for secure access control. The authors utilized a hybrid cloud
infrastructure for encryption and decryption to minimize the computational overhead
effect. Likewise, Sankaran and Kim [79] also proposed a DL-based energy-efficient optimal
RMC-CNN model to secure data transmission and anomaly detection in IIoT. In the au-
thors” approach, RMC-CNN was used to distinguish types of attack—sybil and DoS—in
the network while a multi-scale grasshopper optimization scheme was implemented to
optimize the network model. Data encryption was performed using a dynamic honeypot
encryption algorithm, which was thereafter securely transmitted into the cloud for storage.
The validation of the scheme was conducted using the power, loop sensor, and land sensor
dataset. When its throughput, delay, and detection rate analysis were compared with
existing techniques, the scheme had a better outcome of accuracy, precision, recall, and F1
score. Another defense approach against DDoS attacks in an IloT ecosystem was presented
in [52]. The authors deployed multi-point synergic capability at the edge to protect IloT
devices from attackers. The authors adopt two DL mechanisms, LSTM-Attention network
and 1D CNN architecture. While the former differentiated benign traffic from attack, the
latter categorized and detected the attacks. The proposal was validated using the DoS2019
dataset. Both the DL methods achieved high-performance metrics in precision, recall, and
F1 score. However, the 1D CNN-based method had a better result.

Moreover, in a continuous effort of the research community to achieve safe data
transmission in the IIoT environment, a chaotic map and resource-efficient AE scheme
(ASCON)-based authentication framework for IloT (CMAF-IIoT) was proposed in [39]. The
proposed framework [39] was to ensure seamless communication between the users and
smart devices via local authentication on the devices and the establishment of secure session
keys with the devices. The evaluation of the scheme revealed its low-cost communication,
computation, and storage with resource friendly and improved security measures against
privileged insiders, passive attacks, and MITM attacks. Similarly, an approach toward
secure intranodal device communication in the IloT ecosystem was also conceived by
the authors in [14]. The authors, therefore, proposed a memristive hyperchaotic system-
based complex-valued artificial neural network (ANN) synchronization to ensure secure
coordination and synchronization of session key switch-over in a hyperchaotic environment
like IIoT. The authors generated secure input for ANN synchronization using the proposed
scheme alongside complex-valued parameters for ANN. Such hard weight values of ANN
were to make the attacker’s guess difficult. However, the absence of an optimization
technique for the weight value would likely cause a long synchronization time. Having
provided answers to the first segment of RQ2, we concisely present learning approaches
toward IloTsec, the models used, limitations, and the datasets for validation in Table 2.
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Table 2. Learning models approach for IloTsec. (NA: Not applicable).
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attacks detection

3.2.3. Blockchain Technique

The research community has considered distinct properties of emerging technologies
to ameliorate security challenges in Industry 4.0. In this case, the blockchain technique
also passes the integrity test, based on its decentralization and tamper-proof features, to
be deployed against the assaults in IIoT [81]. In addition, Bouachir et al. [6] carried out
a study on the security challenges across CPSs with a focus on the smart industry. The
authors considered security challenges in RQ1 and, therefore, identified six attributes
of blockchain, such as cryptographic-based security design, immutable data structure;
distributable system (SPOF-free), aggregated transactions ordering (blocks), P2P interaction,
fault-tolerance, and gossip-based communication protocol, making it a better-deployed
technique for IloTsec. Likewise, refs. [6,81] considered scalability and data security leakage
as an inference of the MFC loophole, which could be mitigated by the blockchain technique.
Thus, the authors designed a highly scalable data storage mechanism and cryptographic
accumulator-based data storage scheme to improve fault tolerance and block data storage
leakage respectively using local repairable code (LRC) sharding technology combined with
a bilinear accumulator. The proposed performance scheme proved better toward IloTsec
when compared with existing polynomial coding sharding in the literature.

In the same vein, ref. [17] discovered that data insecurity is caused by the distrust be-
tween the devices of IIoT. The authors affirmed other research works toward the identified
security loopholes but argued that they are unsuitable in distributed networks. Conse-
quently, a hybrid framework of blockchain-based cloud-edge-end and trust mechanism
were designed by the authors. The researchers inclusively used a consensus mechanism of
BLS-based proof of replication (PoRep) to ensure device mutual trust and to proactively
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prevent dynamic calculation of data replicas by the cloud server. However, verifiable delay
functions (VDF) were executed in resistance to parallelization. The experimental result
revealed that the scheme is low-cost-computing, communication, and storage. Despite
the wider storage space provided by the cloud server, cloud computing is still being chal-
lenged with security. This security challenge is still open for research. As a result, Rahman
et al. [82] argued for the safety of confidential information being exchanged with cloud
infrastructure and instead merged blockchain and software-defined networking (SDN)
techniques for enhanced cloud security within the IoT paradigm. In the proposed model,
DistB-SDCloud, blockchain ensures privacy, integrity, flexibility, and scalability, while SDN
improves the durability, stability, and load balancing of cloud infrastructure toward IloTsec.
In recognition of the emerging technologies that necessitate recency in research outlets,
we present in Table 3 only the recent publications that execute blockchain technology
toward IloTsec.

Table 3. Blockchain technique for IloTsec.

Citation Technique

Point-of-Deployment

Key Contributions

Limitation
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technology & scalability in IIoT possible data replica
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and security in an IIoT
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82] Blockchain, SDN, and  IIoT devices and security in cloud computing The proposed model is yet
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time and CPU utilization

[16] A Surve Critical infrastructure It presented various adopted Only considered is the

vey —IIoT devices authentications toward IloTsec authentication of devices
Blockchain and Critical It advances CPSs in terms of QoS, Deploym.en.t s
[6] Foe computin Infrastructure—CPS data storage, computing, incompatibility with
& putmg and security IIoT’s heterogeneity

3.2.4. RQ2-2: Set of Available Datasets Used by Learning Models for IloTsec

In RQ2-1, we discussed how learning algorithms are deployed in various approaches
against numerous attacks in the IloT ecosystem. We also highlighted different datasets
that were used to validate the models in Table 2. However, our critical observation of the
datasets reveals that the majority of the datasets are not IloT-centric, coupled with the fact
that a significant gap is witnessed in some security development solutions toward smart
environments, like IToT, without dataset [49,83]. And when the dataset is even available,
training and validating the fidelity of IloTsec using a non-lloT-centric dataset is also a
vulnerability [39]. Therefore, in this subsection, the aim is to present IloT-centric datasets.
Henceforth, the research community in this niche would find it appropriate for validation.

The dataset is the major component for learning algorithm prediction. However,
datasets are attributes-oriented, identical, and highly sensitive. Whether the datasets are
generated via experimental testbed or synthetically produced, they are all subjected to
various noises and, most times, imbalance [49]. Also, the datasets are non-universal; a
particular dataset does not fit all disciplines nor all scenarios in a single discipline. Therefore,
a technical approach, such as feature engineering, is needed to determine an appropriate
dataset that is usable and useful to the concept at hand. In this work, we found out that
many available datasets are IoT based, such as CIC IoT 2022, MQTT-IOT-IDS2020, UNSW-
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NB15, Bot-IoT, and WUSTL-IIOT-2021. The research community has therefore extensively
evaluated the proposal and deployment using the IoT-based dataset in different dimensions,
as shown in Table 2. The findings are heart soothing, but a significant research gap is that if
IoT-based datasets are more appropriate for IoT-based scenarios, it looks damning when
it is extended to IloT-based problems. The unique part of IloT, the industrial concept,
attracts a huge feature that should not be underestimated for reliable performance accuracy,
especially for a security-tailored remedy. Consequently, we filtered the IloT-based datasets,
and their concepts are highlighted as follows.

e  WUSTL-1IoT-2018

In 2018, Teixeira and his team created an IloT-centric dataset named WUSTL-IIOT-2018
using a SCADA system testbed [84]. The research team used the system testbed in the
water treatment and distribution system’s water storage tank (WST) to have a real-life
replica. The network traffic was under the surveillance of the audit record generation and
utilization system (ARGUS) tool. A total data size of 627 MB was captured for 25 h, while
7,049,989 observations were made. The observations showed 93.93% and 6.07% of benign
and malicious traffic, respectively. When cleaned of missing values, corrupted values, and
outliers, the data were reduced to 7,037,983 samples. The 25 features of WUSTL-IIOT-2018
include source port, total packets, total bytes, source packets, destination packets, and
source bytes, thereby making their observed features vary during benign and malicious
traffic. Likewise, some of the attacks made on the testbed include port scanners, address
scanners, device identifiers, and exploits.

o  WUSTL-IIoT-2021

WUSTL-IIoT-2021 is a network-driven IloT-based data. It has no traffic, data, or
assaults from any IoT-based devices. Thus, it is more suitable for exclusively IlloT-based
scenarios. Benign and malicious data through various IIoT and industrial devices are the
main sources of these dataset [48]. The dataset aims to mimic real-life industrial systems
alongside likely real-life cyberattacks. WUSTL-IIoT-2021 has a total data size of 2.7 GB
when captured for about 53 h. Then, a preprocessing was performed to clean the data of
missing values, extreme outliers, and invalid entries. The preprocessing activity reduced
the total size by one-seventh to ease the intrusion detection model. The total observations
then become 1,194,164, containing 1,107,448 and 87,016 samples as benign and malicious
observations, respectively. The testbed was executed on an average data rate of 419 kbit/s
and an average packet size of 76.75 bytes. The dataset has approximately 90% of the
attacks focusing on DoS attacks, on the assumption that DoS attacks are traffic resourceful
compared to other attacks, that even convey a small amount of traffic.

o X-IIoTID

X-1IoTID dataset is another example of real-life IloT data captured by Al-Hawawreh
et al. [85] at the University of New South Wales (UNSW) in Canberra, to reveal both the
host and network processes in safe and unsafe environments. For this dataset, statisti-
cal, ML, and DL techniques were utilized to identify and detect assault strategies. The
X-IIoTID dataset has 421,417 benign and 399,417 assault observations, totaling a total
instance of 820,834 with 59 features. The features were extracted from log files and net-
work traffic using device resources and public IDS logs in an Industrial Internet Reference
Architecture (IIRA) model-based laboratory architecture. Three class label levels were im-
plemented to represent the attack scenario of the dataset. Class 1 depicted a binary category.
Class 2 revealed a benign and 18 sub-categories of attack, while Class 3 also had a benign but
10 sub-sub attack categories.

o Edge-IloTset

Edge-lloTset is a new comprehensive cyber security dataset for IoT and IloT appli-
cations [86]. The dataset was prepared mainly for cyber security researchers to evaluate
ML-based IDS. The dataset is organized into seven layers, namely the cloud computing
layer, the NFV Layer, the blockchain network layer, the fog computing layer, the SDN layer,
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the edge computing layer, and the IoT and IIoT perception layer. The dataset was generated
from different 10 device sensors. In total, 14 attacks were identified and categorized under
five threats, while 61 features are proposed for use. The dataset was validated using a
primary exploratory data analysis with the performance of ML and DL approaches in both
centralized and federated learning modes.

Other IloT-based datasets specifically used for Al-centric cyber security applications
are the ICS generated WST dataset [87], and the GP dataset. Both datasets possess seven
attack categories each, and they were taken from normal and abnormal observations in the
ICSs laboratories [49]. The WST dataset had a preprocessed network transaction data of
236,180 samples when it was collected from the testbed at Mississippi State University’s
critical infrastructure protection center for 25 h [88]. Of these, 172,415 are normal, and
63,764 are malicious values. The researchers used a bump-in-the-wire approach to gather
data logs and inject attacks into Modbus communication. The dataset is also identified with
24 features. On the other hand, the GP dataset contains a collection of labeled Modbus/RTU
telemetry systems in a total of 10,619 observations via the critical infrastructure protection
center at Mississippi State University. Of the total observations, 6672 are normal and
3947 are malicious values. GP dataset possesses 27 features. Table 4 shows other informa-
tion on IToT-centric datasets, such as evaluated attacks.

Table 4. IloT-centric datasets in the literature.

IToT-Based Datasets Year Number of Features  Testbed Layers  Types of Attacks
Port scanners, address scan attacks, device
WUSTL-II0T-2018 2018 2 4 layers identification attacks, and exploit attacks
WUSTL-I10T-2021 2019 41 4 layers SYN, HTTP
Modbus, WebSocket, CoAP, MQTT, TCP, ARP,
X-loTID 2021 5 3 layers HTTP, SSH, DNS, ICMP, SMTP, and UDP
MITM, backdoor, DDoS, password guessing,
Edge-IloTset 2022 61 7 layers ransomware, XSS, port scanning, SQL injection,
OS fingerprinting
Water Storage Malicious Response Injection, Malicious State
& 2014 24 2 layers Command Injection, Malicious Parameter
Tank dataset ..
Command Injection
Gas pipeline 2015 o7 2 layers Malicious Function Code Injection, DoS,

and reconnaissance

3.3. What Security Enhancement Could the Quantum Mechanism Offer the 1loT Ecosystem?

In Section 3.2, we discussed the extent to which learning and blockchain techniques
have advanced the security frontiers of IloT. The limitations informing future works were
also highlighted. We also discovered the state of importance of evaluating the techniques
using IloT-generated datasets, and we presented available IloT-based datasets. In this
section, a novel mechanism defined as more robust security-wise is discussed here. As a
review study, the presentation is executed in three subsections. The first subsection reveals
the concept of quantum mechanism. In the second subsection, we summarize and present
the methodologies of quantum mechanisms toward IloTsec that have been adopted by
the research community under SOTA. The last subsection shows the extent of researchers’
application of the mechanism and its shortcomings.

3.3.1. Concept of Quantum Mechanism

Quantum mechanism is a recent emerging approach aimed at rebranding the state of
advancement in the security concept. The high demand for fast computations, guaranteed
reliability and security, and energy efficiency by IoT devices in particular has created
a need for quantum computing [89]. Based on its quantum principles, it supports the
seamless processing of multidimensional voluminous data [90]. Additionally, its properties
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of photons—the tiniest individual particles on Earth’s surface—assure overwhelming
capability of processing speed. As a result, the research community has recently discovered
that the classical cryptographic structures-based security is less effective against quantum
computing (QC) attacks [64], for the fact that its mathematically strengthened property
has been challenged by the Shor’s algorithm of quantum since 1994 [91]. For instance, a
30-qubit quantum computer has the equivalent computing capability of 10 teraflops per
second-computing by a traditional silicon-based computer [92]. Therefore, loT-enabled
communication requires quantum-based security to resist both the present sophisticated
attacks and futuristic quantum attacks [64].

Accordingly, the research community in this niche has equally developed quantum-
based cryptographically secured architectures for IoT-related communication, quantum-
resistant remedies against various attacks both within the capability of classical cryp-
tography and beyond, quantum authentication methods, as well as challenges in the
implementation of quantum deployment. Thus, the sustainability of IloTsec has necessi-
tated the dependence on quantum principles for its pervasive security strength, scalability,
immediacy, and miniaturized, less power-consuming devices, which are essential for
heterogeneous resource-constrained networks. In recognition of these features, Singama-
neni et al. [93] described quantum devices, compared to classical computers, as the new
revolution of IloT as a result of its vast computational properties and efficacy. These novel
research opportunities have been well amplified by the research community in the niche of
optimization with applications in operational planning [94], molecular design [95], process
scheduling and operations [33], logistics optimization [96], and energy systems [95]. In
addition, Nawaz et al. [90] identified multi-user detection, indoor localization, routing
and load balancing optimization, and channel estimation as the traditional requirements
of security need in industrial settings, which are easily obtainable through the qubits of
quantum mechanisms.

The result achieved through the proof-of-concept of quantum mechanisms, compared
to conventional computing-based approaches, facilitated huge funding by both the nation-
ally based research institutes and private investors. An example includes quantum tech-
nologies funding from the United Kingdom [97], the United States [98,99], and China. Also,
the potential capability of the quantum for promising uncompromising-digital-sovereignty,
national security, and sustainable industrial competitiveness [100] received the attention of
the United States National Quantum Initiative Act of 2018, for the approval of a sum of
$1.275 billion for a 5-year initiative to expedite quantum research and development. As
a result of its amazing return on investment and promising future, funding earmarked
in 2019 and 2020 exceeded the budget set by Congress [101,102]. Similarly, according
to the Quantum Business Report, private investors, such as venture capital financiers,
are reported to have expended a total of US$2.2 billion in research and development as-
sistance since 2017. And only in January 2019, QC startups attracted an investment of
US$147 million [7]. Table 5 further illustrates the effects of the quantum principle approach
in security compared to the conventional computing approach.

Table 5 shows the state of conventional cryptographic algorithms in the pre- and
post-quantum deployment eras. Though cryptologists dared take an advanced approach
against quantum-based attacks—post-quantum cryptography—all public-key cryptogra-
phy types were broken in the wake of QC technology. Another instance is the requirement
of larger key sizes by the majority of symmetric key types to cope with the capability of
quantum deployment.
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Table 5. State of conventional cryptographic algorithms in the era of quantum computing.

Security Level Metrics T ds QC

Cryptographic Algorithm Cryptographic Type  Main Functi owaf §

yptograp 8 Typtograp M am Fuhction Pre-Quantum  Post-Quantum Requirements

Advanced Encryption . . .

Standard (AES-128) Symmetric Block cipher 128 64 Larger key sizes

Advanced Encryption . . .

Standard (AES-256) Symmetric Block cipher 128 64 Larger key sizes

Poly1205 Symmetric MAC 128 128 Larger key sizes

Galois Message

Authentication Code Symmetric MAC 128 128 Larger key sizes

(GMACQ)

Ron Rivest, Adi Shamir, and . .

Len Adleman (RSA 3072) Asymmetric Encryption 128 Broken Insecure

Ron Rivest, Adi Shamir, and . .

Len Adleman (RSA 3072) Asymmetric Signature 128 Broken Insecure

Diffie-Hellman (DH 3072) Asymmetric Key Exchange 128 Broken Insecure

Digital Signature Algorithm . .

(DSA 3072) Asymmetric Signature 128 Broken Insecure

Elliptic-curve .

Diffie—Hellman 256-bit Asymmetric Key Exchange 128 Broken Insecure

Elliptic-curve . .

Diffie_Hellman 256-bit Asymmetric Signature 128 Broken Insecure

Salsa20 Symmetric Stream Cipher 256 12 Insecure

Secure Hash Algorithm . .

SHA-256 Symmetric Hash function 256 128 Enlarged output

(SSeISIng)HaSh Algorithm 3 Symmetric Hash function =~ 256 128 Enlarged output

3.3.2. SOTA of Quantum Mechanism as an Alternative Security Measure

In line with our search strategy and QAA in Sections 2.2.2 and 2.2.4, respectively, the
vast majority of research works in quantum deployment toward IloTsec are categorizable
into three—survey proposal, review, and deployment. The survey proposal is highly
statistical and opinion-gathering research. In this concept, researchers seek to be acquainted
with the opinions of end users on their knowledge of quantum mechanisms in the IIoT
domain. The review category is classically to garner scholastic and systematic synthesis of
previous findings in quantum deployments, aiming to give current knowledge and identify
research gaps opened for future works. The deployment category is the proposal and/or
execution of quantum principles in the domain of IloT by researchers to detect or prevent
security loopholes. The three categories are aimed to advance the frontiers of IloTsec.

In the work of [103], the authors elucidate two varieties of threats from the review
of the literature. One is a traditional threat, and the other is a quantum-aided threat.
The traditional threats are the assaults that are recognized as pre-quantum vulnerabilities.
Some of these threats are recorded to have been detected, prevented, and mitigated using
conventional cryptographic approaches. Contrarily, quantum-aided threats are classified as
post-quantum attacks, which are not likely to be tamed by a conventional approach but a
sophisticated means of quantum approach [92]. The authors emphasized that this category
of threats is launched with a quantum element. They also emphasized that a quantum-based
security approach would be top-notch as soon as QC is fully commercialized. Hence, more
research studies on security are encouraged to be tailored toward quantum deployment.

Rivero-Angeles [104] carried out a review of the integration of quantum principles
into wireless sensor networks (WSN). The researcher found out that WSN has become
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a convergent point for the research community in a cybersecurity ecosystem. Any com-
promise to the security of WSN is a red flag for IloT security in particular. Hence, in
this adaptation, the proposal was made to explore mathematical modeling and analytics
approaches to adopt quantum mechanisms for the security of WSNs. The author henceforth
encouraged the research community to intensify the integration, as the literature depicts the
fast metamorphosis from quantum computing to a proposed new era of quantum Internet.
Relatively, EL Azzaoui et al. [105] proposed a quantum cloud for the security of healthcare
management systems based on its sensitivity and necessity to all. The study revealed that
quantum features such as entanglement and no-cloning theory are most appropriate to
safeguard the sensitivity of medical data, while the deployable quantum cloud system
(QCS) would be appropriate to take care of the data’s processing complexity, molecular
simulation, drug discovery, diagnostic exercise, among others.

Another industrial realm was considered in the work of [106]. In the study, several
security approaches for the automotive industry were considered and compared based on
KPIs. Of the approaches, some forms of quantum algorithms take precedence in securing
the industry. In recognition of the studies in a quantum ecosystem, a bibliometric study
of a decade’s research output was conducted by [107]. The authors queried and analyzed
15,911 publications on QC-based security for the IoT environment using VOSViewer’s
algorithm, ranging from the notable contributing nations, organizations, researchers, ci-
tation networks, and collaboration networks to publishing sources. The result showed
the researchers’ interest in exploring quantum mechanisms for IoT security to the fullest,
as it has significant capability over conventional cryptography. Based on this, developed
countries such as India and the US have a concentrated leading record in the proposal and
deployment of quantum approaches to both quantum attacks and non-quantum attacks,
while other countries such as China, Egypt, the UK, South Korea, Saudi Arabia are also
in the top following layer in terms of contribution frequency to the creation of, and im-
provement on, theories and protocols underlying QC-based IoT security. Also, in the same
year, [108] decried a lot of optimization problems in an IloT ecosystem. While considering
a variety of available quantum algorithms expressed by [106], the authors conceded to
the adoption of a quantum annealing (QA) processor for the optimization problems. The
outcome was satisfactory, and the authors suggested the efficacy of the quantum approach
as a preventive measure for present and future quantum attacks in an IloT ecosystem. In a
tabular presentation, Table 6 reveals the SOTA on quantum techniques deployment toward
diverse industrial settings.

3.3.3. Quantum Deployment in IIoT

Despite the infant stage of QC deployment, the IIoT sector has inclusively gained
tremendously from the capability features of quantum security. Its merits have been felt in
most strategic units of the IloT ecosystem. In this section, the core contributions of quantum
security deployment, as well as its limitations, are discussed. As discussed in RQ1-1, signal
attenuation is very challenging for IloTsec. For this fact, Ghorpade et al. [36] proposed a
novel enhanced quantum PSO (EQPSO) algorithm based on quantum and bio-inspired
techniques to regain energy efficiency and achieve optimal routing, reliability, and scala-
bility in an already signally attenuated IloT ecosystem. When a quantum-based approach
was compared with the conventional approach, the former had a record of improved
searching precision and convergence swiftness, additional diverse paths generation, and
29.87% throughput improvement beyond the latter. However, the authors only considered
optimizing sensors and fog nodes in the IloT ecosystem. Moreover, Singamaneni et al. [93]
discovered another set of vulnerabilities against IloTsec, such as MITM, photon number
splitting (PNS), and faked state attacks. The authors admitted that only MITM had been ad-
dressed by a conventional approach. To fill the research gap, a novel chaotic dynamic QKD,
multi-state qubit QKD, was implemented to ensure secure communication and distribution
of sensitive information in a large-scale industrial network. Also, with the progressive
launch and discovery of sophisticated attacks against IloTsec, in particular, [37] discovered
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that secure, confidential, and accessible industrial operations could only be guaranteed
with the supremacy power of quantum cryptography and QKD applications. The authors
even depicted how the quantum technique is far better security-wise than the conventional
asymmetric approach, with a reduced dynamic key generation computational overhead.
Unfortunately, as good as the secure deployment approach of [93] between the IIoT devices,

it does not consider the possible presence of intruders in its evaluation.

Table 6. State of the art on Quantum Techniques Deployment.

Authors Findings Methodology Future Direction

Quantum computers reveal the classu:;'il cryptographic IoT devices are to be engineered toward the

weakness to the threats from the classical and . . .
[103] . . . Review integration of quantum attack-

quantum mechanisms. Breakthroughs in the field of - o

. resistant capability

quantum-resistant cryptosystems

Each of the. follow.mg quantum algorithms is identical Quantum algorithms are to be more widely

in solving industrial problems. QAOA, quantum . . .

. . . , . deployed, especially in the automotive
[106] adiabatic algorithm, Grover’s search algorithm, Survey ) . .
. . . .. industry to curtail the current challenges in
differential quantum circuits, variational quantum
s the system

classifiers, and networks

Quantum cloud system is observed to safeguard Deployment of a QCS to solve processing
[105] sensitive medical data due to its distinct features of Review complexity of medical data: molecule

entanglement and no-cloning simulation and drug discovery processes

Implementation of QA processor for optimization Industries are to adopt the ql'lantum
[108] . . . Deployment  approach as a safeguard against present and

challenges in an industry setting

future quantum attacks

Trends in QC from quantum computers to quantum ' Researchers are to integrate QC into WSN

[104] algorithms and even to the development of Review . . .
using mathematical modeling

quantum Internet

Analyzed QC-based security of IoT environment. The authors opted for more research work in

QC, unlike classical computing, has high processing . this area to ameliorate the security risk in the
[107] . ; . Review . .

power to rapidly tame current encryption techniques. computing era with the help of

Developed countries are leading in this research niche QC-based IoTsec

ML approaches in data training and processing are

incapacitated for 6G networks due to their dynamic Adoption of Quantum-inspired ML

applications and services. QML algorithms enhance applications by the next generation’s
[109] . .. . Survey

processing efficiency for effective quantum data quantum developers and researchers for 6G

representation, storage, secure communications, and networks and beyond

superposition framework

Need of quantum technology, for 6G communication,

due to its efficient ultra-reliable, faster, economic Intensification of more research work on
[110] power, and reliable communication in revolutionizing  Survey emerging QC for its potential capability in

wireless resource optimization challenges in 6G
communication systems

solving computing complexity efficiently

Moreover, in recognition of the QKD technique as a vital security mechanism of
quantum, Senapati and Rawal [7] proposed and deployed time-sensitive QKD against
DDoS, backdoor, injection, ransomware, XSS, and scanning vulnerabilities to ensure a QKD
security model across smart industrial operations. QKD has also been proposed for a large-
scale networks (LSN) protocol against a common eavesdropping vulnerability in Internet
ICSs [35,73]. In another study of [35], a performance comparison between QLSN and DH
key exchange was carried out to minimize risk and maximize reliable communication
against a possible showdown occasioned by the eavesdropping effect in an LSN. The result
satisfied a QKD-approach effectiveness in a vigorous safety and speedy attack discovery.
To validate its viability, the researchers proposed the integration of the QLSN protocol into
the IBM Qiskit simulator.
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Likewise, Liu et al. [111] stepped further to adopt multi-party collaborative signatures
from the lattice hard technique against additional attacks, such as impersonation, reply,
side channels, and quantum algorithm attacks. The researchers were able to use multi-
party signatures and public auditing to ensure the triads of security of the new protocol
in the random oracle model. The authors developed a prototype under the hardness of
MLWE as a demonstration of the protocol’s feasibility and efficiency evaluation. Similarly,
a Lightweight PQE algorithm-Nth-degree Truncated Polynomial Ring Units (NTRU) ap-
proach was proposed in [3] to ensure the privacy preservation of the authorized party
during registration in an IIoT ecosystem. This approach does not only offer reliability and
dynamism of access control management system for IloT devices in a decentralized setting
but also utilizes TIC, URC, and MC to manage all events in an IIoT environment. The
traditional identity scheme was advanced to a flexible identity token, which eventually
undermined the malicious attack.

In reality, all the vulnerabilities are virtually data-dependent and intensified in this
era of big data. Thus, the cause of such vulnerable data is assumed to a compromised
data or ill-processed data for decision-making. Meanwhile, smart industries rely on data
analysis to optimize production, make predictions, preempt risk, and manage threats if
they eventually occur. With this discovery, an attempt was made by the authors in [4]
to identify hidden vulnerabilities in the smart industry settings via data classification
with the aid of QNN to have secure and reliable big data decision-making in the IloT
ecosystems. The researchers, thus, implemented a quantum approximate optimization
algorithm (QAOA) for the production optimization in logistics and product shipping across
the four divisional layers of the IIoT system, namely the device, edge, fog, and cloud
layers. However, the study did not provide a practical scenario to visualize the results of
hands-on on quantum computers, though the simulation was run using IBM Quantum
Lab’s Qiskit software v.0.19.0. Conclusively, the trend at which quantum techniques have
been deployed for IloTsec in recent years is presented in Table 7.

3.4. Is Hybrid Quantum-Classical More Efficient Against IIoT Security Challenges than a Single
Technique Deployment?

In Section 3.2, we discussed how learning techniques and blockchain have leveraged
security enhancement to IIoT. At the same time, we discovered that DL algorithms have
subtle records of deployment to IloTsec, as presented in Table 7. Likewise, Section 3.3
revealed the esteemed value of quantum deployment to IloTsec in the literature. Meanwhile,
in both sections, we highlighted the limitations of each technique in their deployment
accordingly. In this subsection, we aim to address the remnant security deficit in the IIoT
should a hybrid of quantum principles and learning techniques be deployed. Our aim is
inspired by the findings of [89,109]. Duong et al. [109] emphasized the security strength
of hybridization of techniques in terms of being exponentially faster and computationally
efficient for complex multidimensional functions than a classical algorithm for the same
function. In addition, Rajawat et al. [89] pointed out the advantages of hybrid quantum-
classical, in particular, as it offers immediate detection and resolution of any security issue
through its features of tight protections, comprehensive testing, and regular monitoring.
Unfortunately, we discovered through our QAA that the quantum-classical approach is still
at the infant stage owing to the state of access, technical know-how, and cost of quantum
hardware. And even when quantum access is available, mostly via simulation, many works
on quantum-classical approaches are still at the theoretical stage.

Quantum-classical learning (QCL) is a novel and emerging subfield of quantum
computing that uses quantum algorithms to solve problems in classical learning—ML and
DL while speeding up the process exponentially [112]. A heterogeneous environment,
like IIoT, has been characterized by several security breaches by adversaries; hence, it
necessitates a blink-of-eye security approach. QCL has been identified for such an approach
as it combines the inherent security properties of quantum with classical algorithms [36,113].
In QCL, a classical dataset is often encrypted for use in quantum information processing,
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and the quantum result is only obtained when the state of such a quantum system is
measured. A quantum state, unlike classical, are quantum bits (qubits) that communicate
with each other at a faster speed than the speed of light, regardless of the distance apart.
This feature also enhances qubit storage capability. For instance, a classical computer, using
classical bits, could only store one of four possible binary configurations (00, 01, 10, or 11)
at any given time, unlike a 2-qubit registry that is capable of simultaneously storing all
four qubits because a qubit carries two integers. Thus, the increased capacity of qubits is

proportional to the square number of qubits [114].

Table 7. Applications of Quantum Mechanisms in IIoT. (NA: Not available.).

Security

Citations  Architecture Attack Types Contributions Limitations
Types/Tools
Proposed QKD for QLSN was Risk minimization and
[35] large-scale Eavesdroppin validated in the reliability maximization in No data was
networks (QLSN) pping IBM Qiskit an LSN. It outperformed the reported used
protocol simulator DH key exchange.
Securely classify industrial
Logistic system QAOA and data with QNN. And instant Non-in-depth
[4] S NA quantum neural _ . . .
optimization predictive decision-making  practical approach
network (QNN)
with QAOA
. DDoS, Backdoor, Digital twins, and quantum
Rawal Liang and oo . ., o,
, Injection, Time-sensitive cryptography were jointly No Sum Sequence
[7] Peter’s (RLP) .
sequence for QKD Ransomware, XSS, QKD applied for IloTsec, approach
4 Scanning alongside QKD
Quantum Supports multiparty Formal proofs of
algorithm attacks, signatures and public security given in
Multi-party Reply attacks, auditing. Proved the the ran}(]i(%m oracle
collaborative Impersonation Data integrity and  unforgeability, conditional
[111] p srity 8 Y assume that
signature from attacks, MITM authentication privacy preservation, and AMIWE and
lattice hard attacks, deterrability of the new
. . AMSIS problems
side-channel protocol in the random are hard
attacks, and so on oracle model
Virtualize the generation Secure ke
and transmission of qubits, exchangesybetween
. . MIMD, phqtop Confidentiality thus recllucing the key . IIoT devices were
[93] Multi-state qubit number splitting and Integrity. Java generation’s computational only executed in a
QKD model (PNS) attacks, and snippet ' complexity. While with non-present
faked state attacks PP QKD'’s security intrurt):ler
enhancement, attacks are .
discarded environment
Proposed EQPSO to
Enhanced actualize reliability, Only optimized
. Quantum and . ! .
Quantum Particle L improved processing time,  deployments of
bio-inspired
[36] Swarm NA techniques for TToT buffer’s healthiness in the sensor and fog
Optimization ne two(r]ks IIoT ecosystem, while nodes in IIoT
Algorithm focusing on improving environments

energy efficiency

In a general term, QCL could be categorized into three: classical learning with quantum
data [34,90], quantum speed-ups for classical learning [34,89,115], and quantum algorithms
used on quantum data [113]. In the first category, quantum data are fed into a classical
learning algorithm. An instance is the construction of many-body systems using AI [116] or
the estimation of physical parameters in quantum metrology [117]. The second category is
the potential capability of quantum information processors to produce unclonable patterns
and also recognize patterns that are classically undistinguishable [118]. For example,
classical data could be encoded as quantum states to quantize subroutines of classical
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algorithms. The last category of QCL is when both the algorithms and training data are
based on quantum mechanisms. QNNs are mostly deployable for this task [119]. Though
this category promises better efficiency and scalability, the hunt for the optimal quantum
versions of neurons, network structures, and training algorithms remains open research for
the research community [113].

Unfortunately, to the best of our knowledge, and as of the time of writing this paper,
no study has comprehensively considered the deployment of QCL in the IIoT ecosystem.
However, very few works discuss a narrow part of QCL in an industrial sector, which is
insufficient to generalize. Meanwhile, the authors [120] pointed out the potential of QCL,
such as QNN, to improve performance, reduce processing time, and identify adversaries
in material science, financial predictive analytics, medical precision, and pharmaceutical
structure. As a result, related works of QCL are henceforth discussed. Rajawat et al. [89], in
recognition of the sensitivity and heterogeneity of large voluminous health-related data,
implemented quantum machine learning (QML) to detect and assess security loopholes in
the Internet of Medical Things (IoMT) for accurate predictions. The authors proposed an
innovative fused semi-supervised learning model, compared QML-based results with the
other five ML algorithms, and highlighted the merits of QML for a veritable security assess-
ment in IoMT. In addition, EL Azzaoui et al. [4] discovered operational flaws in the finance
sector, and therefore implemented a QNN to actualize an optimized scalable and smart
transparent financial sector. Furthermore, the quantum capability to remedy the longer
training time [35], computational complexity in CLAs using different approaches [7,93,111]
and inelasticity of classical bits promises to allay the fear of processing times, computational
complexity, and classical bits challenges when QML is deployed for lloTsec. However,
possible limitations and challenges surrounding the deployment of QML are presented
in Section 4.

4. Limitations, Challenges, and Prospects

In this study, our scope of study is the capabilities of learning techniques and quantum
mechanisms in the deployment of security approaches toward industrial IoT. Meanwhile,
the security paradigm in blockchain was briefly discussed because some studies hybridize
it into learning techniques. Thus, the review of the learning techniques shows that the
volume and velocity of data featured with IIoT are the causes of a larger percentage of
the DL approach by the research community than ML. While the data are fundamental
to modeling, it is, however, discovered in this study as a challenge. Hence, we categorize
the challenges emanating from this SLR into modeling building blocks and quantum in
infancy, as discussed in Sections 4.1 and 4.2. In furtherance, identification of the challenges
and the contribution of the security-deploying techniques foster new development in the
realm of IloTsec. Such new development extends the research innovation and, therefore,
opens research direction for the exploration of the research community, which is discussed
under the prospects of the study.

4.1. Modelling Building Block

In this concept, the fundamental feature that needs to be well-finetuned for the process
and success of the building model, classical or quantum, is the dataset. Our findings
show that many researchers do not validate their modeling using the IloT-centric dataset.
Hopefully, the reason could be a generalization that IIoT sprouts from IoT [12]. However,
such thought is likely to be inimical to the accuracy of prediction as a result of the possible
lack of industrial features in such a dataset. We, therefore, have presented the available
IIoT-centric datasets for the researchers in the niche to validate. In addition, as much as the
[loT dataset is prioritized, preprocessing would be required by the domain expert. While
in a QCL environment, preprocessing could be executed using any of the three categories
of QCL discussed in Section 3.
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4.2. Quantum at Infancy

As much as quantum mechanisms promise an optimized effectiveness and efficiency
toward IloTsec against present and future quantum attacks, it is still at the infant stage as
most of the studies on it are at the theoretical stage. As a result, both the quantum resources
and quantum hardware are currently limited, and even the limited available resources and
hardware are financially expensive, making their use exclusive. When a simulator is freely
accessible, like Qiskit, obtainable qubits are limited. In addition, the expertise in quantum
use, skills, and knowledge are still below the expected threshold, especially in Africa. Thus,
the research community keeps advancing the concept by rolling several media, so that
interested researchers might become skilled in leveraging quantum security advancement.
Moreover, owing to the sensitivity of security-tailored techniques, standardization of the
technique must be prioritized. Surprisingly, the standardization of QCL algorithms is yet
to be concluded [4].

4.3. Prospects of the Study

Our research findings pointed out that the challenges in the literature and the de-
ployed approaches foster the prospects of this SLR. As such, the prospects of this SLR are
presented here. IloT bridges the gap between intelligent machines, advanced analytics,
and people at work, as it stems from endogenous requirements of industrial develop-
ment and technology-driven features of Internet evolution to the delivery of an optimal
smart, productive ecosystem [10,121]. Our study, therefore, depicts how the IIoT ecosystem
promises large-scale customization, dynamic optimized and real-time production flexibility,
and maximized resource utilization and minimized energy consumption. However, the
vulnerabilities embedded in IT/OT convergence as presented in Table 1 are yet to receive
adequate attention from the researchers for their persistence, whereas the convergence is
fundamental to the IloT ecosystem [21,22].

According to Tange et al. [8], the IT paradigm, unlike OT, of convergence has been
marginalized in the research cycle of lloTsec. Unfortunately, it is at the upper layer of
IT/OT convergence. It, therefore, serves as the loophole for data-centric security, which is a
threat to the IIoT ecosystem. Likewise, our broad classification unveils how architectural
design loopholes require more research attention than MFC. As a result of the research
gap in these two concepts, it is pertinent for the research community to fill the gap to
realize the required IloTsec. In addition to the CLAs for IloTsec, the DL approach receives
significant attention from the researchers toward IloTsec, as depicted in Table 2. This is not
unconnected to the heterogeneity concerns of the IIoT ecosystem and the unique velocity
and massive features of the industrial data. Meanwhile, the evaluation of IloT-tailored
models with non-IoT-centric data are assumed to be unreliable for decision-making and
generalization. Thus, instances of IloT-centric datasets are presented, and subsequent
researchers are encouraged to evaluate using IloT-based datasets in this niche.

Furthermore, execution time, computational complexity, and energy consumption
remain the major drawbacks across CLAs. These bottlenecks have drastic effects on a
heterogeneous network, like IIoT, and even make the network more susceptible to classical
and quantum attacks. Thus, QM recently gained the attention of the researchers to mitigate
such attacks in LSNs of the IIoT ecosystem [35]. Our findings show promising efficiency
in deploying QM, although this emerging technology has some challenges as earlier high-
lighted owing to its infant stage of deployment [122]. In addition, the research direction
shows that hybrid QCL would reinforce IloTsec, and henceforth advance the optimization
of technological operation, enterprise management, and the IIoT ecosystem [123-125]. The
security capability demonstrated by QSVM, QPSO, and QNN in the related concepts of
IoMT, finance analytics, material sciences, and medicine therapies over a single deployment
technique is a testimony to the veritability of QCL in IloTsec [33,36,96,101,126,127]. Hence,
the deployment of hybrid QCL is very promising for IloTsec. Thus, continuous research in
this field is promising to proffer practicable remedies to the outstanding challenges, such as
awaiting wearing-out of classical bits according to Moore’s law [4], decoherence and gate
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infidelity, infeasibility of non-IloT working environment, quantum attacks, exponential
rate of IoT penetration, and proposed quantum Internet [37]. Thus, the primary takeaway
from the findings depicts that hybridizing quantum with DL promises better reliability
for IloTsec.

5. Conclusions

In this SLR paper, our assessment of the variety of security assaults against IIoT
shows that they are categorizable into two main loopholes, architectural design and MFC.
Based on this, we discussed how emerging technologies, blockchain, CLAs, and quantum
mechanisms have offered security fidelity in detecting, preventing, predicting, and miti-
gating the loopholes in the IIoT ecosystem. We showed the strengths and weaknesses of
security technologies. Consequently, our research-based answers to the RQs show that a
larger percentage of the approaches in the literature are tailored toward the MFC of IloT
ecosystem challenges in RQ1-2. Such a discovery revealed that the architectural design
challenges of IloTsec are still open research, as the vulnerabilities of IT layers. Our work
also revealed that hybrid QCL shows a promising fidelity for lloTsec. Hence, it is also
open for exploration by the research community. Meanwhile, for a reliable prediction and
accuracy of IloTsec’s models, we propose that the research community should prioritize the
IloT-centric dataset. Finally, it is hoped that this study will serve as a reference for future
advancement in [IoTsec, employing QCL for IloTsec against architectural design threats,
MEC challenges, and IT/OT convergence vulnerabilities.
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AE Autoencoder

Al Artificial Intelligence

ANN Artificial Neural Network

ARGUS Audit Record Generation and Utilization System

BA Bat Algorithm

CFBPNN Cascade Forward Back Propagation Neural Network
CLA Classical Learning Algorithm

CMAF-IIoT  Chaotic Map and resource-efficient AE scheme-based Authentication Framework for IIoT
CNN Convolutional Neural Network

CPS Cyber-Physical Systems

DBN Deep Belief Network

DEMA Data Extraction and Monitoring Activity

DH Diffie-Hellman

DL Deep Learning

DNS Domain Name System
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DoS
DT
ELM
EQPSO
FT-CID
GA
GDP
GRU
GP
HMI
HNS
1CS
1DS
IoT
IIRA
Industry 1.0
Industry 2.0
Industry 3.0
Industry 4.0
IoMT
IoT

I

1PS

IT
KNN
LoRaWAN
LRC
LSTM
LR
LSN
MC
MFA
MEC
MITM
ML
MLP
MQTT
NFV
NTRU
OCPC
oT
PCA
PLC
PMIM
PNS
PoRep
PQE
PSO
QA
QAA
QAOA
QC
QCs
QCL
QKD
QLSN
oM

Denial of Service

Decision Tree

Extreme Learning Machine

Enhanced Quantum Particle Swarm Optimization
Federated-Transfer-learning-assisted Customized distributed IDS
Genetic Algorithm

Gross Domestic Product

Gated Recurrent Unit

Gas Pipeline

Human Machine Interface

Hashed Needham Schroeder

Industrial Control System

Intrusion Detection System

Industrial Internet of Things

Industrial Internet Reference Architecture
First industrial revolution

Second industrial revolution

Third industrial revolution

Fourth industrial revolution

Internet of Medical Things

Internet of Things

Internet Protocol

Intrusion Prevention System
Information Technology

K-Nearest Neighbor

Long-Range Radio Wide Area Network
Local Repairable Code

Long Short-Term Memory

Logistic Regression

Large-Scale Network

Manage Contract

Multifactor Authentication
Multifaceted Connectivity
Man-in-the-Middle

Machine Learning

Multilayer Perceptron

Message Queue Telemetry Transport
Network Functions Virtualization
Nth-degree Truncated Polynomial Ring Unit
Operation-Constrained Process Control
Operational Technology

Principal Component Analysis
Programmable Logic Circuit

Parallel Machine Intelligent Machines
Photon Number Splitting

Proof of Replication

Post Quantum Era

Particle Swarm Optimization

Quantum Annealing

Quality Assessment Activity

Quantum Approximate Optimization Algorithm
Quantum Computing

Quantum Cloud System
Quantum-Classical Learning

Quantum Key Distribution

Quantum Large Scale Network
Quantum Mechanisms
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QML Quantum Machine Learning
QNN Quantum Neural Network
QPSO Quantum Particle Swarm Optimization
QSVM Quantum Support Vector Machine
RF Random Forest
RLP Rawal Liang and Peter
RMC-CNN  Robust Multi-cascaded CNN
RNN Recurrent Neural network
RPL Routing Protocol for ow-power and Lossy networks
RQ Research Question
SCADA Supervisory Control and Data Acquisition
SCPS Smart Cyber-Physical System
SDN Software-Defined Networking
SLR Systematic Literature Review
SOTA state-of-the-art
SQL Structure Query Language
TIC Token Issue Contract
UNSW University of New South Wales
URC User Register Contract
VDF Verifiable Delay Functions
WSN Wireless Sensor Network
WST Water Storage Tank
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