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A B S T R A C T

Extending the public electricity grid to rural or peri-urban areas is sometimes very costly and
unprofitable due to their remoteness, low population density and sometimes difficult accessi-
bility. In view of this, and in the concern of a sustainable development, the autonomous PV and/
or wind power systems is increasingly used. However, these fluctuating source systems remain
unreliable due especially to their intermittent nature, what justifies the integration of battery
storage systems to them. They are also still expensive, particularly in the African context, limiting
their access to the greatest number of the population. In addition to these problems of cost and
reliability, the issue of optimal sizing of such systems is essential. In this paper, energy storage
technologies, performance criteria, basic energy production and storage models, configuration
types, sizing and management techniques discussed in the literature for the study of stand-alone
solar and/or wind power systems in isolated sites are reviewed. The findings of the present study
reveals that electrochemical battery is the main technology used for energy storage in stand-alone
PV-wind systems due in particular to their maturity compared to the other storage technologies.
However, it also shows that while batteries are the most widely used energy storage technology
for solar and wind power systems, they are still expensive. The paper also revealed that tradi-
tional methods of optimal sizing and management of autonomous solar and wind power gener-
ation systems are being used less and less, in favor of artificial intelligence methods, due mainly to
their limited flexibility and inability to solve complex problems.

1. Introduction

In most developing countries, especially in Africa, rural and peri-urban areas are the most disadvantaged in term of access to
electricity supply [1]. Indeed, for these areas, grid extension is very costly and unprofitable due to their remoteness or low population
density. In these areas, energy systems based on diesel generators are often used. These solutions are not economical for the population
with low-income levels, especially those from rural areas. On the other hand, these solutions are not environmentally friendly because
of CO2 emissions into the atmosphere by these generators [2,3]. Fossil fuels currently account for nearly 80 % of world’s primary
energy consumption, while global demand is expected to grow by 2.3 % per year between 2015 and 2040 [3]. In this context,
stand-alone photovoltaic (PV) and/or wind energy systems with electrochemical storage and/or hydrogen fuel cells are seen as
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Abbreviations

AC Alternative current
ACO Ant Colony Optimization
ACS Annualized Cost of System
CRF Capital Recovery Factor
CBat battery Capacity(Ah or Wh)
BAO Bat Algorithm Optimization
DPSP Deficiency of Power Supply Probability
DCHR Discrete Chaotic Harmony Research
HS Harmony Search
SA Simulated Annealing
OM Operating and maintenance
EMS energy management system
PV Photovoltaic
WT Wind Turbine
PPV Photovoltaic Field power (Watts)
PWT Wind field Power (Watts)
SPV Total area of PV field (m2)
SWT Total area of wind turbine (m2)
DC Direct current
DEMO Differential Evolution Multi-Objectif
GA Genetic algorithm
PSO Particle Swarm Optimization
MPSO Modified PSO
PSO-CF PSO with Constriction Factor
PSO-RF PSO based on Repulsion Factor
PSO-W: PSO with adaptive inertia weight
PEMFC Proton Exchange Membrane Fuel Cell
AFC Alkalin Fuel Cell
DMFC Direct Methanol Fuel Cell
MCFC Molten Carbonate Fuel Cell
SOFC Solid Oxide Fuel Cell
PAFC Phosphoric Acid Fuel Cell
EL: Electrolyzer
FC Fuel cell
FA firefly optimization algorithm
FPA Flower pollination algorithm
LOLP Loss Of Load Probability
LPSP Loss of Power Supply Probability
LCOE Levelized Cost of Energy
LOEE Lost Of Energy Expectation
LCC Life Cycle Cost
TCC Total Capital Cost
NPC Net Present Cost
TAC Total Annualized Cost
TIC Total Investment Cost
TS Tabou Search
HSS Hydrogen Storage System
NAD Number of Autonomy Days
MFO Moth Flame Optimization
MPPT Maximum Power Point Tracker
MAS Multi Agent System
REP Replacement
SOC State Of Charge
DOD Deep Of Discharge
ANN Artificial Neural Network
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sustainable and environmentally-friendly means of power generation suitable for electrification (households, schools, health centers,
commerce …), water pumping, telecommunications and street lighting in isolated sites [1,4]. However, there are still a number of
obstacles to their widespread use. These include fluctuating production sources, high investment costs linked to expensive technologies
and unsuitable design methods [4,5].

In [6] it has been demonstrated that the cost storage using supercapacitor is approximately €16,000/kWh. Despite their high
performance, supercapacitors remain prohibitively expensive for the general public. A study by Diaf et al. [7] examines the optimi-
zation of a PV-wind system with battery storage across various sites in Islands. This research reveals that the suitability of the location
and the system’s configuration not only impact storage capacity but also influence the evolution of the storage’s state of charge and the
Levelized Cost of Energy (LCOE). Several other optimization studies have been carried out in order to obtain reliable and economically
accessible autonomous systems. These are mainly techno-economic sizing studies [4,8–11] or techno-economic feasibility analysis [2,
12–16]. In Ref. [17], a statistical analysis was carried out using data extracted from the 550most relevant and recent articles published
between 1995 and 2020 on stand-alone or grid-connected PV-wind hybrid systems. This analysis reveals that stand-alone PV-wind
hybrid systems are the most studied for residential applications. In addition, it is shown that Genetic Algorithm (GA), Particle Swarm
Optimization (PSO), and HOMER and MATLAB software are the most widely used methods and tools for techno-economic studies of
these systems. Allywn et al. [18] conducted a techno-economic analysis of a PV-Battery system for public lighting in Oman. They
explored the impact of the autonomy on the system cost by comparing a systemwith battery storage with a systemwithout any storage.
They used genetic algorithm for optimization. Loss of Power Supply Probability (LPSP) and Levelized Cycle Cost (LCC) were used as
technical and economic criteria, respectively. The study assumed a battery autonomy of three days and a battery lifespan of seven
years.

One can notice that very often, aberrant and unjustified considerations of the number of days of storage autonomy, the absence of
analysis of storage ageing according to user consumption profiles, and the use of inefficient energy management strategies are
considered in the various studies shown above.

The aim of this article is to review energy storage technologies, and the sizing andmanagement techniques used for the design and/
or management of stand-alone fluctuating source systems (solar, wind) in isolated sites. The keys contributions of this work can be
listed as follows.

• Identify the best storage technology for stand-alone PV/wind power systems based on the maturity and cost of different storage
technologies.

• Identify and classify sizing methods and tools for stand-alone photovoltaic and/or wind energy systems with storage.
• Analysis of different energy management techniques for stand-alone photovoltaic and/or wind power systems with storage.
• Highlight gaps in the literature about the optimal choice of storage autonomy and battery lifetime.

The paper is structured into ninemain sections. Section 2 presents the storage technologies used in PV and/or wind systems. Section
3 presents the configuration types of stand-alone PV and/or wind hybrid systems with storage encountered in the literature. Sections 4
and 5 present respectively, the sizing techniques for stand-alone solar and/or wind-powered systems with storage, and the perfor-
mance criteria used. Section 6 presents basic mathematical models of solar and wind power generation and storage. Section 7 reviews
the state of the art in energy management techniques and studies of autonomous hybrid systems. A discussion of the various aspects of
autonomous systems with fluctuating sources covered in the previous sections is given in Section 8. The paper ends with a conclusion in
Section 9.

2. Energy storage types in fluctuating source systems

Autonomous systems for producing electricity from fluctuating sources such as the sun and wind are clean, sustainable means of
producing electricity from hundred Watts to some kilo Watts, suitable for electrifying buildings (households, schools, health centers,
shops, etc.), pumping water, telecommunications and public lighting in isolated locations (islands, rural or peri-urban areas). These
systems do not offer security of supply due to the intermittent nature of the sources [4]. Energy storage systems such as electrochemical

Fig. 1. Energy storage systems for isolated sites.
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storage or batteries, supercapacitors and hydrogen storage systems (Electrolyser-Fuel Cell-Hydrogen Tank) can be used alone or in
hybridization to tackle this issue [19] (Fig. 1).

2.1. Individual storage systems

2.1.1. Electrochemical storage: batteries
Batteries or electrochemical accumulators are systems used to store electrical energy in the form of chemical energy for later use.

They are used both in nomadic applications (portable electronics and automobiles) and in stationary applications such as mass storage
of electricity from renewable energies [20]. Depending on their "chemistry", there are three main battery technologies on the market
[6]: lead-acid, nickel-cadmium and lithium-ion. Other types of batteries exist, but are still in the development and demonstration
stages [20]. These include flow batteries, sodium-ion batteries and metal-air batteries (zinc-air, Li-air). Table 1 gives a comparison of
the characteristics of the most widely electrochemical batteries used in stand-alone power systems today.

Of these three technologies, lithium-ion technologies offer the best performance but cost 2 to 3 times more than nickel-cadmium
technologies and 5 to 10 times more than lead-acid technologies. Battery life time varies according to operating regime or conditions,
but in terms of years is generally between 5 and 10 years [6].

2.1.2. Supercapacitor storage
Supercapacitors are systems capable of storing electrical energy in the form of electrostatic energy for later use. Mainly considered

as power sources, supercapacitors have a high capacity (from a few Farad to several thousand Farad) and a low voltage withstand (from
1V in aqueous media to 3.5V in organic media) [20]. They are frequently used in the transport sector, where their technology generally
satisfies starting requirements. They are also used as back-up power supplies for computer memories and brake energy recovery
(elevators, streetcars, subways, etc.) [6]. In conjunction with batteries, they also extend battery life time by supplying the power peaks
that place the greatest strain on the battery. Today, the main challenge is to increase the energy density of supercapacitors [20].
Supercapacitors have a lifetime of around 8–10 years, an efficiency of around 95 %, a self-discharge of around 5 % per day and a
capacity of up to 5000 F [6]. At their average level of maturity, supercapacitors have the highest investment costs. To store one kWh of
electrical energy, they cost around 15,000€ [6].

2.1.3. Hydrogen storage system
Hydrogen is a fuel generally obtained by electrolysis of water and can be used in a fuel cell (FC) to produce electricity or heat [3,

14]. It is the fuel for the fuel cell, just as diesel is for the diesel generator. This makes the fuel cell an alternative to diesel generators. It
can therefore be used in stand-alone power systems as a backup source to compensate intermittencies. In PV and/or wind power
systems, the fuel cell can also be used in combination with an electrolyzer to convert surplus solar and/or wind power into dihydrogen
[3,14]. In this case, as shown in Fig. 3, the electrolyzer consumes the surplus electricity produced by the PV and/or wind power system,
and converts the water molecules stored in a tank into dihydrogen. The hydrogen thus produced is stored under high pressure in
another tank to power the fuel cell, which in turn generates electricity to meet demand in case of insufficient or absence of solar or
wind power. The combination of these two tanks, the electrolyzer (EL)and the fuel cell (FC) is called a Hydrogen Storage System (HSS).
The cost of such a storage system is currently unaffordable, not only because of the high cost of the materials used in their manufacture
(platinum), but also because of the cost and complexity of the accessories (converters, compressors, etc.) that go with them [14,21].
Although hydrogen offers many advantages, it still faces a major challenge in terms of safety, durability and high-efficiency storage
[12,22,23]. In addition, the high intrinsic power consumption of HSS limits their electrical performance compared with battery storage
systems [14,22]. Today, the fuel cell is seen as an alternative to diesel generators, which are considered polluting and noisy, but there
are still a number of obstacles limiting its widespread use on both a small and large scale [2]. There are currently six types of fuel cell,
but most are still at the R&D stage [21]. Only PEMFC (Proton Exchange Membrane Fuel Cell) technology is suitable for residential use,
because of its low operating temperature and wide power range (Table 2). Its disadvantage is that its lifetime is short and its cost is still
high, due to the platinum used as a catalyst and which constitutes the key element of this Cell [12,21–23]. Indeed, platinum is a noble
metal widely used as a catalyst due to its chemical stability. Research into newmaterials as catalysts is underway to break the barrier of
high cost and short-term durability imposed by platinum on PEMFCs [10]. Uncertainty remains on the real costs of the other fuel cells
currently under development, as shown in Table 2.

Table 1
Characteristics of the three most common battery technologies on the market [6].

Accumulators Energy density
(Wh/kg)

Power density
(W/kg)

Discharge
time

Shelf life Self-discharge
(%/month)

Efficiency
(%)

Life time (number
of cycles)

Cost
(€/KWh)

Lead acid 25–45 280–150 15min-100h >1 month 40 60–98 300–1500 50–200
Nickel-

cadmium
20–60 100–800 15min-100h <1 month 25 60–80 300–1500 200–600

Lithium-ion 80–150 500–2000 45min-100h Several
month

20 90–100 >1500 700–1000
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2.2. Hybrid energy storage systems

In stand-alone systems or microgrids using fluctuating renewable energy sources such as solar or wind, the storage systems are
sometimes hybridized in order to increase the technical reliability and economic viability of these systems [2,13], [24–26]. Several
economic feasibility studies have been carried out on this issue [2,13,24,25]. In the literature, hybrid battery-supercapacitor or
battery-hydrogen storage systems are generally found (see Table 7). In these hybrid storage systems, each storage plays a specific role
in contributing to the overall reliability or viability of the stand-alone system or microgrid. For example, in a microgrid using a hybrid
battery-supercapacitor storage system, the batteries can be used to smooth production or regulate the microgrid frequency, while the
supercapacitors can be used to absorb consumption peaks, helping to improve not only the system reliability but also battery lifetime.
It should be noted that, unlike supercapacitors, batteries do not cope well with the absorption of power peaks. While energy storage
systems and hybrid energy storage systems are important in stand-alone systems or in isolated-site microgrids, these systems are still
expensive, especially supercapacitors, as Fig. 11 clearly shows.

3. Configuration of stand-alone HYBRID PV/WIND systems with storage

In order to improve the reliability and viability of autonomous systems with fluctuating sources, hybridization of sources and
storage is being used [2,13,24,25]. However, the reliability and cost of these systems depend not only on the quality of the resources
and types of storage, but also on the types of configuration used. For example, an optimization study of a PV-wind system with battery
storage carried out for several sites in Island by Diaf et al. [7] has shown that the quality of the potential as well as the configuration of
the system had an influence not only on the storage capacity but also on the evolution of the state of charge of the storage and the
Levelized Cost of Energy (LCOE). They also show that hybridization of sources was the best option compared to PV-only or wind-only
generation [7]. There are six widely studied stand-alone PV and/or Wind power generation systems with storage (S1 to S6) as
illustrated in Fig. 2. Among them, the most tested or studied are the PV-Wind-Battery stand-alone hybrid systems (S5) [17]. This is
confirmed by Tables 3, 4 and 6.

For hybrid autonomous systems such as S8, the main elements (sources, storage system and load) are related by one or two buses
(DC and/or AC) through power converters. There are three types of configurations (DC bus configuration, AC bus configuration and
DC-AC buses configuration) listed in Refs. [27–29].

• DC bus configuration

In this configuration, as illustrated in Fig. 3, apart fromDC loads which are fed directly from the DC bus, all sources, storage systems
and AC loads are connected to a common DC bus via appropriate power converters to match their voltage to that of the bus. This is the
configuration most widely used in the literature, due to its easiness of management. However, it involves more converters and can

Table 2
Some characteristics of different fuel cells [6,12,21].

Fuel cell’s name Proton Exchange
Membrane Fuel Cell
(PEMFC)

Alkalin Fuel
Cell (AFC)

Phosphoric Acid
Fuel Cell (PAFC)

Molten Carbonate
Fuel Cell (MCFC)

Solid Oxide Fuel
Cell (SOFC)

Direct Methanol
Fuel Cell (DMFC)

Efficiency(%) ~35 - 50 60–70 ~37 - 42 50–60 40–65 ​
Operating

temperature
(◦C)

40–100 60–220 180–220 600–660 700–1000 60–100

Power <1 kW–100 kW 1 kW–100 kW 50 kW - 10 MW 500 kW - 10 MW 1 kW - 10 MW –
Cost(€/KWh)

(H2+Fuel cell)
500–1500 – – – – –

Application Vehicle, autonomous
system

Aeronautics Power plant Power plant Power plant Power plant

Fig. 2. Possible configurations of stand-alone PV and/or wind power systems with storage [25].

J.G. Kafando et al. Heliyon 10 (2024) e38080 

5 



therefore be costly. Authors such as Belmonte et al. [14], Belouda et al. [30], for example, have used this configuration for economic
analysis and optimization studies.

• AC bus configuration

In this configuration, the PV field, the fuel cell and the battery park are connected to a common AC bus via appropriate power
converters, enabling their voltages to bematched to that of the bus (see Fig. 4). The AC load and wind field are directly connected to the
AC bus. However, two AC/DC converters are required in the configuration to power both the DC load and the electrolyzer. The
management of such a system is more complicated than that of a DC bus system, due to the high fluctuation of the AC bus voltage.

Fig. 3. DC bus configuration of the PV-wind system with hydrogen and battery storage.

Table 3
Classic formulas for sizing a PV or wind power system.

PV field size or power inWatt peak (Wp)
is [38]
[41,42] PPV1 =

CJ

k*IJ
(1)

or

PPV2 =
CJ

ηPV*ηINV*PHS*SPV
μ, (2)

With CJ: daily consumption (Wh); IJ: Daily solar irradiation (kWh/m2/day); k: coefficient taking into account the
efficiencies of all converters; ηPV : module efficiency; ηIN: coefficient taking into account the efficiencies of all converters;
μ : safety coefficient taking into account cell temperature and joule losses; PHS (Peak Sun Hours): number of hours in
the day with 1000W/m2 ; SPV : Total area of PV field (m2).

Size or capacity of wind field (PWT in W)
[7,8,39,40]. [43]

PWT =
1
2
CP.ηM.ηg.ρ.SWT.V3

moy, (3)

With CP : BERTZ limit(0.59); ηM : Multiplier efficiency; ηg : Generator efficiency; ρ : air density (1.293 kg/m3) SWT : Total
area of wind turbines (m2); Vmoy: Average annual wind speed(m/s).

Park battery capacity (Ah) [38,41,43]

CBat =
CJ*NJ

UB*DOD*ηB
(4)

WithNJ: Number of days of autonomy (days);UB : park battery terminal voltage (V);DOD: maximum depth of discharge
(%); ηB: battery efficiency.

Size of PV-wind-battery hybrid system
[7,8,39,40].

,

SPV = F
CJ

ηPVIJ
(5)

SWT =(1 − F)
CJ

Ew
(6)

With: CJ: daily energy consumption (Wh); SPV : Total surface area of PV field (m2); SWT : Total surface area of wind
turbines (m2); F: fraction of demand covered by PV generation; (1-F): contribution from wind turbines; ηPV :PV
generator efficiency (%); Ew : energy produced per unit of wind surface area (KWh/m2)
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Table 4
Summary of studies based on traditional optimization methods.

References Method Systems Optimization
parameters

Optimization
functions

Constraints or
performance
criteria

System or
storage lifetime

Outcomes

Kellogg et al.
[51]

Iterative PV-wind-
battery
system

Number of PV
modules, number
of wind turbines,
Storage capacity

TAC (Total
Annualized
Cost)

Energy balance
between
demand and
production

System:20 years
Battery:4 years

The optimum system size
has been found for
powering an isolated
residential house in
Montana.

Belmili et al.
[50]

Iterative PV-wind-
battery
system

Number of PV
modules, number
of wind turbines,
Number of days of
autonomy

LCOE (Levelized
Cost Of Energy)

LPSP (Loss of
Power Supply
Probability)

System:20 years
Battery:4years

A technical and
economic sizing tool for
PV-wind-battery hybrid
systems has been
designed.

Yang et al.
[72]

Iterative PV-wind-
battery
system

Number of PV
modules, number
of wind turbines,
Number of days of
autonomy

LCOE LPSP System:25 years
Battery:4 years

An optimal technical-
economic sizing method
has been developed for
stand-alone PV-wind-
battery hybrid systems.

Alimi et al.
[4]

Iterative PV and/or
wind
system
with
battery

Number of PV
modules, number
of wind turbines

TCC (Total
Capital Cost)

Optimum
battery
capacity

System: 20
years
Battery: 1500
cycles

An iterative method for
optimal technical and
economic sizing has been
developed for stand-
alone PV and/or wind-
battery systems.

Prasad et al.
[10]

Iterative PV-wind-
battery
system

Number of PV
modules, number
of wind turbines,
Number of days of
autonomy

LCC (Life Cycle
Cost), LCOE,LUC
(Life Cycle Unit
Cost)

DPSP
(Deficiency of
Power Supply
Probability)

System:25 years
Battery:4 years

A simulation software
was developed to
perform the analysis in
order to optimize the size
of the integrated system
for a given location.

Kaabèche
et al. [9]

Iterative PV-wind-
battery
system

Number of PV
modules, number
of wind turbines,
Number of days of
autonomy

LCOE DPSP
(Deficiency of
Power Supply
Probability)

System:25 years
Battery:4 years

The optimal system size
was determined for
supplying an isolated
residential household in
Algeria by applying the
iterative method.

Olcan [49],
Bakelli
et al.
[73]

Iterative PV system
- motor
pump -
water
tank

Number of
modules, Tank
capacity

LCOE DPSP Système:25
years
Réservoir:25
years

An iterative method for
the technico-economic
dimensioning of a stand-
alone PV system for
water pumping has been
proposed.

Khatod et al.
[52]

Analytical Stand-
alone PV
and/or
wind
power
system

PV field size, wind
field size

Available energy LOEE (Lost Of
Energy
Expectation)

​ Optimal PV and/or wind
field sizes were found.
The proposed analytical
method was found to be
better in terms of
execution time than the
Monte-Carlo method.

Kaldellis
et al.
[54]

Analytical PV-
battery
system

PV field size,
storage capacity

Life cycle
Energie

EPBP (Energy
Pay Back
Period)

​ Optimal PV array and
storage sizes have been
found for an EPBP of 15
years or less.

Khatib et al.
[55]

Analytical PV-
battery
system

PV field size,
storage capacity

Balance between
demand and
production

LOLP (Loss Of
Load
Probability)

​ The approach provided
the optimal PV field size
and storage capacity
using LOLP and daily
insolation data.

Viveros et al.
[56]

Analytical PV-
battery
system

PV field size,
storage capacity

autonomy Balance
between
demand and
production

​ The approach provided
values for autonomy
factors enabling the
optimum combination of
peak power and storage
capacity to be found for
best load satisfaction.

Jakhrani
et al.
[53]

Analytical PV-
battery
system

PV field surface
area, storage
capacity

System cost LOLP ​ A new sizing method
(Markvart’s method) has
been proposed, which is

(continued on next page)
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Table 4 (continued )

References Method Systems Optimization
parameters

Optimization
functions

Constraints or
performance
criteria

System or
storage lifetime

Outcomes

estimated to be better
than other methods.

Yang et al.
[57]

Probabilistic PV-wind-
battery
system

PV field size, wind
field size, storage
capacity

LPSP Balancing
demand and
production
SOC (State Of
Charge)

​ It was found that an LPSP
of 0 % could be achieved
with a battery bank with
a storage capacity of 5
days.

Bagul et al.
[58]

Probabilistic PV-
battery
system

PV field size,
Storage capacity

LOLP ​ ​ The optimum system
configuration has been
found.

Abbes et al.
[60]

Multi-objective PV-wind-
battery
system

PV field surface
area,
Wind field surface
area,
Storage capacity

LCC, LPSP et EE
(Embodied
Energy)

LPSP System: 25
years
Battery: 5 years

120 Pareto optimum
points were found for an
LPSP of 5 %.

Bilal et al.
[61]

Multi-objective PV-wind-
battery
system

number of
modules, turbines,
batteries,
controllers and
inverters

ACS
LPSP

LPSP ​ For fixed LPSP and for
several load profiles the
optimal system
configuration has been
found

Semassou
et al.
[59]

Multi-objective PV-
battery
system

number of
modules, number
of batteries,
module type,
battery type and
cable cross-section

Nine criteria
considered
(LOLP,
LCOE …)

​ ​ A number of possible
solutions were identified
after a systematic scan of
design variables

Ridha et al.
[43]

Multi-objective PV-wind-
battery
system

number of
modules, number
of turbines,
number of batteries

LPSP, LCC,
Dumped Power

​ System: 20
years
Battery: 2 years

Optimum system
configuration found for
residential applications
in Malaysia and South
Africa.

Borowy et al.
[74]

Graphics PV-
battery
system

number of
modules, number
of batteries

System cost LPSP ​ A correlation between
the number of PV
modules and the number
of batteries has been
found.

Kaabeche
et al. [9]

Graphics PV-wind-
battery
system

number of
modules, number
of batteries

System cost LPSP ​ For a given load profile,
turbine size and LPSP,
the optimum torque is
found.

Mokheimer
et al.
[63]

Graphics PV-wind-
battery
system

number of
modules, number
of batteries

LCOE LPSP ​ A correlation was found
between the number of
PV modules and the
number of batteries,
allowing the optimum
number of PV modules
and batteries to be found
for a given LPSP.

Kaushika
et al.
[68]

Linear integer
programming

PV-
battery
system

Number of
modules, number
of batteries

LPSP LPSP ​ Taking into account
panel orientation, solar
tracking and simple cost
analysis, the best system
configuration was found

Nogueira
et al.
[69]

Linear integer
programming

PV-wind-
battery
system

number of
modules, number
of turbines,
number of batteries

LCOE LPSP System:20 years
Battery: 4 years

For a given load profile
and LPSP, the optimum
system configuration is
obtained.

Fetanat et al.
[70]

Linear integer
programming

PV-wind-
battery
system

Number of
modules, number
of turbines,
number of batteries

System cost LPSP System:20 years
Battery: 4 years

For a given load profile
and LPSP, the optimum
system configuration is
obtained.

Ridha et al.
[46]

Intuitive,
iterative, multi-
objective and
VIKOR

PV-
battery
system

Number of
modules, number
of batteries

LOLP, LCC et
LCOE

​ System:20 years
Batterie: Lead
acid (2 years);
AGM (3 years)
and Li-ion (10
years)

The best configuration
was found with the
system integrating lead
acid batteries.
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Table 5
Summary of studies based on artificial intelligence methods.

References Methods Systems Optimized parameters Optimization
functions

Constraints Results

Yang et al.
[72]

GA PV-wind-battery
system

number of turbines,
number of PV modules,
number of batteries,
module tilt angle, mast
height

ACS
(Annualized
Cost of system)

LPSP Applied to a case study (relay
station), the optimal solution
found is 3 or 5 days of storage
for an LPSP of 1 % or 2 %.

Amer et al.
[81]

PSO Multi-source
system- Storage

Number of sources,
power demand and
storage capacity

LCOE Balance
between
demand and
production

Source sizes and storage
capacity are optimized by
minimizing the LCOE.

Zhou et al.
[82]

GA and PSO PV-wind-battery
system

number of modules,
number of wind
turbines, number of
batteries, converters
and angle of inclination
of modules

LCC Balance
between
demand and
production

The optimal configuration was
found by minimizing the LCC
using both methods

Ghorbani
et al.
[24]

GA-PSO (hybrid)
and MOPSO
(Modified PSO)

PV-battery system;
wind-battery
system and PV-
wind-battery
system

number of modules,
number of wind
turbines, number of
batteries

LCOE LPSP The optimum configuration for
each system was obtained by
minimizing the LCOE and for
LPSPmax of 2 %, 5 % and 10 %.
Both methods produced better
results than HOMER

Arabali et al.
[79]

GA PV-wind-battery
system

PV field surface area,
Wind turbine surface
area
Storage capacity

System cost ​ Optimization procedure
optimizes system cost and
increases efficiency

Suhane et al.
[78]

Ant Colony
Optimization
(ACO)

PV-wind-battery
system

Number of modules,
turbines, batteries,
converters

LCOE LPSP The optimal solution obtained
by ACO was found to be slightly
better than that obtained by
conventional techniques.

Bilal et al.
[61]

GA PV-wind-battery
system

numbers of PV
modules, wind
turbines, batteries,
inverters and
regulators

Total Cost of
System

LPSP The system has been technically
and economically sized

Xu et al. [83] GA PV-wind-battery
system

PV field size,
Size of wind field
Storage capacity

Initial
investment cost

LPSP The optimal system
configuration was found by
minimizing the cost for an LPSP
of 1 %

Fathima
et al.
[84]

BAO (Bat
Algorithm
Optimization)

PV-wind-battery
system

Storage capacity Initial
investment cost

​ Optimum storage capacity and
revenue losses were determined

I.Tégani
et al.
[85]

GA PV-wind-battery
system

Number of modules,
turbines, batteries,
MPPT controllers,
power converters

Initial
investment cost

Balance
between
production
and demand

The minimized cost using GA
was compared to that using
conventional optimization
methods. The GA was found to
be better

Askarzadeh
[86]

Discrete Chaotic
Harmony Research
(DCHR), HS et
HSSA

PV-wind-battery
system

Number of modules,
turbines, batteries

Annual system
cost

​ DCHR performed better than the
others

Belouda
et al.
[30]

NSGAII PV-wind-battery
system

Number of modules,
turbines and batteries

Total cost of
system (TCS)
LPSP

​ A set of Pareto solutions have
been found

Allwyn et al.
[18]

GA PV-battery system The number of modules
and batteries

LCC LPSP It was found that the LCC of the
system taking NAD into account
is higher than that of the system
not taking NAD into account
(Number of days of autonomy)

Bi et al. [80] DA (Dichotomy
Algorithm)

PV system-
Electrolyser-Fuel
cell-Battery

Size of PV field ​ ​ The size of the PV array was
optimized. The sizes of the other
components have been
conventionally evaluated

Hatata et al.
[87]

clonal selection
algorithm
(CLONALG)

PV-wind-battery
system

The number of
modules, turbines and
batteries

System cost LPSP A comparative study of one case
showed that the method
compared favorably with the
genetic algorithm, in that it led
to the best solution.

(continued on next page)
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• Two-bus configuration (AC and DC)

The DC-AC hybrid configuration has a DC bus and an AC bus as one can see in Fig. 5. The PV field, fuel cell, battery park and
electrolyzer are connected to the DC bus via appropriate power converters, while the wind field and AC load are directly connected to
the AC bus. The number of converters used is reduced by one compared with the DC bus configuration, which means slightly lower cost
and higher efficiency [27,29]. The disadvantage of this configuration is that the control and energy management are much more
complex due to the addition of the AC bus. What’s more, if the inverter connecting the two buses fails, overall system operation will be
severely disrupted. Under these conditions, the battery will no longer receive energy from the wind field, and the AC load will only be
supplied by the wind field. In Refs. [2,31] such a configuration was used for an optimization study.

4. Sizing methods and tools for fluctuating-source stand-alone systems

Sizing an electrical system involves finding the characteristics of the various system components that will enable it to meet the load
demand. Optimal system sizing therefore means finding the optimum characteristics (optimum capacities of PV/wind generators,
batteries, etc.) by minimizing or maximizing a cost function, while ensuring system reliability. Various methods and tools for sizing
autonomous systems with fluctuating sources such as solar or wind have been reviewed by a number of authors in the literature [27,29,
32–37]. In this article, they are grouped into four main categories: traditional classical methods, traditional optimization methods,
artificial intelligence methods and software (see Fig. 6).

4.1. Classic traditional methods

Classic traditional methods are based on simplified equations, as shown in Table 3, for dimensioning PV and/or wind systems,
avoiding hourly or daily profiles of sunshine and/or wind speed [38]. These methods are not optimization methods. In fact, they are
simply based on two options for possible average values of sunshine or wind speed [7,8,39,40]. These are the option for the annual
average value and the option for the monthly average value of the worst month [37].

With classical sizing options, storage is sized on the basis of daily consumption and the number of days of autonomy [7,8,39,40].
Two to three days of autonomy are generally considered in sizing [44]. In Refs. [45,46], intervals of 2–9 days and 3–5 days of au-
tonomy are mentioned respectively. These methods are very simple and easy to use. However, they generally lead either to oversizing,
in which case the user is confronted with an additional economic cost, or to undersizing, in which case the user is confronted with a
system reliability problem. Undersizing can even lead to premature battery ageing due to overuse. Authors such as Khadimi et al. [39]
and Diaf et al. [7] have used the annual mean value and the monthly value of the worst month to size a stand-alone PV-wind-battery
hybrid system. They also used a factor representing the fraction of the load produced by the PV array. Kaushika et al. [47] have
proposed a classical sizing tool for PV systems with or without storage for the Indian region. The method uses monthly and daily
average values of insolation or consumption to evaluate the size of the system. An autonomy of 3 days was considered. In Ref. [48],
Herteleer et al. have proposed an intuitive program for sizing stand-alone PV systems for offices in Africa. They then proposed a simple
tool (a spreadsheet) to help non-experts in the field. Belmonte et al. [14] have classically designed a PV-EL-FC system and a PV-battery
(Li-ion) system for stand-alone applications in Turin, Italy, and then carried out an economic analysis of the two systems to compare

Table 5 (continued )

References Methods Systems Optimized parameters Optimization
functions

Constraints Results

Maleki et al.
[77]

TS, SA, HS, PSO,
MPSO, PSO, (PSO-
RF), (PSO-CF),
(PSO-W)

PV-wind-battery
system

The number of
modules, turbines and
batteries

TAC Balance
between
production
and demand

Of all these methods, PSO with
constriction factor (PSO-CF)
proved to be the most effective.

Farès et al.
[76]

GA, CS, HS, SA, FA,
FPA, MFO, BSO-
OS, S-SSA,

PV-wind-battery
system

The number of
modules, turbines and
batteries

TNPC (Total
Net Present
Cost)

DPSP Of these ten algorithms,
simulated annealing and the
flower pollination algorithm
were the best in terms of
offering the best-quality
solution

Ramoji et al.
[31]

GA et Teaching
Learning Based
Optimization
(TLBO).

PV-wind-battery
system

PV field surface area,
Wind turbine surface
area
Storage capacity

TAC ​ The optimum configuration is
obtained by minimizing the
total cost of the system.

Khatib et al.
[5]

ANN (Artificial
Neural Network)
and analytic
method

PV-battery system The number of
modules, turbines and
batteries

LOLP ​ The method showed high
accuracy in terms of system size
prediction. Applied to a given
load profile, an LLOP of 0.5 % is
obtained.

Khatib et al.
[42]

DEMO
(Differential
Evolution Multi-
Objectif) algorithm

PV-battery system The number of modules
and batteries

LOLP
LCC

​ This method was found to be
better than the numerical
method in terms of execution
time and accuracy.
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Table 6
Inputs, outputs, advantages and limitations of the above software and sizing methods [8,24,27,34,36–38,71,92–94].

Tools and Methods Inputs Outputs Limits Advantages

HOMER (Free 30-day trial
available at www.
homerenergy.com)

Load demand, resource data,
component costs,
constraints, control system,
emissions data.

Net present cost, cost of energy,
cost of capital, unmet load,
surplus energy, fuel consumption,
fraction of renewable energy.

- Does not take into
account: battery DOD,
intra-hour variability, bus
voltage variation

- Impossible to import time
series data

- Based on monthly solar or
wind values

- Does not support
simultaneous multi-
objective optimization

- Plots results in graphs
- Easy to understand
- Uses first-degree linear
equations

HYBRID2 (Free and
downloadable from
www.ceere.org/rerl/rerl
hydripower. Html)

Load demand, resource data,
system component details,
financial data

Technical analysis, optimal sizing
and financial evaluation.

- Need for long-term data
for better economic anal-
ysis of hybrid systems

- Limited access to
parameters and lack of
flexibility.

- Takes a long time to
simulate

- Although the project is
successfully written, some
simulation errors are
displayed

- Many electric charging
options

HOGA (Paid Pro version and
free EDU version
downloadable from
www.unizar.es/rdufo/
grhyso.htm)

Constraints, resource data,
component data, economic
data

Multi-objective optimization, life-
cycle emissions, energy supply
analysis

- Limited to an average
daily load of 10 kWh.

- No sensitivity analysis
- No probability analysis
- No net metering

- Allows single- or multi-
objective optimization

- Low simulation time
step.

HYBRIDS (Paying) Average daily load data Energy costs, percentage of
greenhouse gas emissions

- Simulate only one
configuration at a time.

- Can not optimize

​

TRNSYS (Paying) Weather data, models from
own library

Dynamic simulation of the
behavior of thermal and electrical
energy systems

Impossible to simulate
nuclear, wave, tidal and
hydro power.

- Flexibility in
simulation

- High precision with
graphics

RETScreen (Free and
downloadable from
www.retscreen.net)

Climate database, Project
database, Product database,
hydrological database

Technical, financial and
environmental analysis,
sensitivity and risk analysis,
energy efficiency, cogeneration

- Does not take into account
the effect of temperature
on panels.

- No option to import time
series data files.

- Limited options for
search, extraction and
visualization functions,

- No optimization option

- Best weather database
- Excel-based tool

PVSYST (Paying, www.
pvsyst.com/en/
download)

Monthly average weather
data, load demand, system
component specifications,
module inclination

PV field size, storage capacity and
inverter power ratings

- Does not allow economic
analysis

- Limited to PV systems
only.

- Switch from monthly to
hourly data

- Ability to import or
export data

Classic Average monthly or annual
sun and/or wind speed
values, daily consumption

PV and/or wind field size, storage
size

- Does not take into account
sunshine and wind speed
profiles,

- Oversizing or undersizing
of systems due to outliers
(worst month,
autonomies)

- Very easy to
understand and use

Iterative Hourly or daily profiles of
sunshine, wind speed and
power consumption

Optimum technical, economic
and environmental sizing

- Does not optimize PV
module tilt angle and
turbine mast height

- Only optimizes turbine
and PV sizes

- Uses time series data

- Easy coding

Analytical Hourly or daily profiles of
sunshine, wind speed and
power consumption

Optimum technical, economic
and environmental sizing

- Less suitable for sizing,
- Allows evaluation of
system performance

- Very limited number of
optimization parameters

- Simulates the
performance of several
PV-wind system
configurations

(continued on next page)
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the types of storage used. An autonomy of 2 days was considered for the batteries. Their analysis showed that the PV-EL-FC system is
much more expensive. This reflects the high cost of the hydrogen storage system. In their analysis, the lifetimes of the modules,
batteries, electrolyzer and fuel cell were taken to be 25 years, 10–15 years, 15 years and 15 years respectively.

4.2. Traditional optimization methods

This category includes iterative, probabilistic, multi-objective, graphical and mixed integer linear programming methods. These
are methods for finding the minima or maxima of a constrained or unconstrained objective function. They generally take as input
hourly, daily or monthly meteorological data on sunshine, wind speed and ambient temperature. The iterative approach consists of
using a recursive or incremental process to find the best system configuration to meet demand, by minimizing a cost function such as
the Levelized Cost of Electricity (LCOE), using time series data [27,49,50]. The process stops when the best configuration has been
found according to the technical constraints imposed, such as the Loss of Power Supply Probability (LPSP). Techno-economic
dimensioning studies of PV and/or wind systems with battery storage using this technique consider the number of PV field mod-
ules, the number of wind generators, and the number of batteries or the number of days of autonomy as optimization parameters [9,
49–51]. Some studies based on this method are proposed in Refs. [9,49–51] and summarized in Table 4. The analytical method
evaluates the optimal system configuration based on mathematical computational models, often allowing the dynamic performance of
the system to be assessed, [52,53]. Some studies based on the analytical approach are proposed in Refs. [54–56] and summarized in
Table 4. The probabilistic approach takes into account the random nature of variations in sunshine and wind speed for system design
[37]. In contrast to the iterative and analytical methods, the probabilistic approach does not use time series data, nor does it evaluate
the dynamic performance of the system [34,57,58]. Some studies based on the probabilistic approach are proposed in Refs. [57,58]
and summarized in Table 4. There are two common approaches to multi-objective design [27]. The first general approach is to merge
all individual objective functions into a single one [59]. The second approach is to determine a set of Pareto optimal solutions [60]. The
resulting solution is said to be Pareto optimal if it is dominant among the various solutions in the solution space. A Pareto optimal
solution cannot be improved with respect to one objective without deteriorating at least one other objective. The main objective of a
multi-objective optimization algorithm is to know the solutions in the Pareto optimal set [27]. Some studies based on the probabilistic
method are also presented in Refs. [27,59–61] and summarized in Table 4. As far as the graphical method is concerned, only two
decision variables are taken into account in the optimization (number of PVmodules and number of batteries or number of PVmodules
and number of wind turbines). Significant factors such as the angle of inclination of the solar panels and the installation height of the
wind turbine are completely ignored. Some sizing studies using the graphical method are presented in Refs. [62–64] and summarized
in Table 4. Integer linear programming is a widely used technique for sizing and optimizing renewable systems. It is characterized by
the linearity of the optimization problem and includes both positive integer and binary variables. Binary variables can represent
operating states (on or off) or tripping states of the system or its components. It is mainly used in mini-grid design for storage sizing and
energy management [65–68].

Some dimensioning studies using the graphical method are presented in Refs. [69,70] and summarized in Table 4. In general,

Table 6 (continued )

Tools and Methods Inputs Outputs Limits Advantages

Probabilistic Hourly or daily profiles of
sunshine, wind speed and
power consumption

Optimum technical, economic
and environmental sizing

- Cannot represent dynamic
hybrid system
performance

- Very limited number of
optimization parameters

- No need for data time
series

Graphic Hourly or daily profiles of
sunshine, wind speed and
power consumption

Optimum technical, economic
sizing

- Can only take two
optimization parameters.

- Very limited number of
optimization parameters

- Easy to understand and
use

Multi-objective Hourly or daily profiles of
sunshine, wind speed and
power consumption

Optimum technical, economic
and environmental sizing

- Complex
- Long runtime
- Very limited number of
optimization parameters

- Takes into account
several objective
functions

Linear integer programming Hourly or daily profiles of
sunshine, wind speed and
power consumption

Optimum technical, economic
and environmental sizing

Limited to linear
optimization models or
problems

- The most flexible of
traditional methods

- Software available
using the method

Artificial Intelligence Hourly or daily profiles of
sunshine, wind speed and
power consumption

Optimum technical, economic
and environmental sizing

Complex (difficult to code) - The most flexible
dimensioning method,

- Offers high-quality so-
lutions in reasonable
times

- Takes many
optimization
parameters

- Allows multi-objective
optimization
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Table 7
Summary of software-based studies of autonomous systems with fluctuating sources.

References Type of study Tools Studied system Performance
indicators

Application Location Lifetime Results

Das et al.
[15]

Technico-
economic
feasibility

HOMER PV-Fuel Cell
(FC)-Battery
System
PV-FC system

NPC (Net
Present Cost)
LCEO

Residential East
Malaysia

System: 25
years
Battery: 3
years
FC: 40000
h

The FC-based system
has higher costs, so
despite its
advantages, it is not
suggested as the best
system for the
situation

Khan et al.
[2]

Energy,
Economic and
Environmental
sensitivity
analysis (3E)

HOMER PV-EL-FC-Battery
system

NPC
LCEO
Tonnes de CO2
émise

Rural
community

Pakistan System: 25
years
Battery:15
years
EL: 15
years,
FC: 15000h

It emerges that the
proposed system is
financially,
technically and
ecologically a
feasible solution for
rural electrification
compared with the
diesel generator

Pelaez
et al.
[3]

Technico-
economic
optimization

HOMER PV-EL-FC system NPC
LCEO

Residential
(Cogeneration)

​ System: 25
years
EL: 15
years
FC: 40000
h

Their analysis shows
that the system is not
economically viable,
but technically
feasible.

Sharafi
et al.
[25]

Simulation and
Technico-
economic
optimization

HOMER Six systems: PV/
battery, wind/
battery, PV/
wind/battery,
PV/PC, wind/FC
and PV/wind/FC

NPC
LCEO
COH (Cost Of
the Hydrogen
production)

​ Kingdom
of Saudi
Arabia

System: 25
years
EL: 15
years,
FC: 40000
h

The analysis
revealed that only
the PV/wind
turbine/battery
system was
profitable for the
Yanbu region out of
four regions
considered

Fazelpour
et al.
[16]

Economic
feasibility

HOMER PV-wind-battery;
wind-battery
wind-
electrolyser-fuel
cell; wind-
electrolyser-fuel
cell-battery; PV-
wind-
electrolyser-fuel
cell-battery

NPC
LCEO

Household Teheran,
Iran

System: 25
years
Battery:
4–15 years
EL: 15
years,
FC: 15000
h

The analysis
revealed that the PV-
wind-electrolyser-
fuel cell-battery
system was
economically
feasible.

Silva et al.
[13]

Economic
feasibility

HOMER PV-battery
system, wind-
battery system,
PV-electrolyser-
fuel cell system

NPC
LCEO

Remote
community

Brazil’s
Amazon
region

System: 25
years
Battery: 4
years
EL: 15
years,
FC: 30000
h

Only PV-battery
system found
economically
feasible.

Andrew
Mills
et al.
[91]

Design and
simulation

HYBRID2 PV-wind-battery
system
PV-wind-battery-
fuel cell system

Energy
performance

Stand-alone
application

Chicago. ​ They showed that
there was no need to
include the fuel cell,
as only the PV-wind-
battery system met
the requirement.

N. Ahmed
et al.
[90]

Optimization HOGA PV-battery
system; wind-
power + battery
system and
stand-alone PV-
wind-battery
system.

NPC Stand-alone
application

Several
sites in
Egypt

​ For each site and for
the same load, the
system with the
lowest NPC (Net
Present Cost) or
considered optimal

Anoune
et al.
[95]

Sizing TRNSYS PV-wind power
system

​ Thermal
applications in
isolated sites

​ ​ An optimal system
configuration was
found using a
deterministic
approach

(continued on next page)
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traditional optimization methods lead to approximate solutions. They are easy to understand and use. However, their level of use is
declining in favor of artificial intelligence methods, due to their long execution times and their inability to find exact solutions to
problems [36].Among these traditional optimization methods, linear programming is considered the most flexible in Ref. [36], while
the iterative method in Ref. [37] is estimated to have a level of accuracy, execution time and complexity comparable to artificial
intelligence methods. The iterative method is indicated in Ref. [71] as being the most widely used for PV-wind-battery system sizing
among traditional optimization methods. Table 4 below summarizes studies of autonomous systems with fluctuating sources based on
traditional optimization methods.

4.3. Artificial intelligence methods

Artificial intelligence approaches are trajectory- or population-based meta-heuristic algorithms inspired by natural behaviors or
biological systems [35,75,76]. They are flexible and even efficient in large-scale optimization problems, offering high-quality solutions
in reasonable times [33]. Path-based algorithms are iterative methods with a single solution, based on neighborhood search. They start
with an initial solution and improve it step by step by selecting a new solution in its neighborhood. Simulated Annealing (SA) and

Table 7 (continued )

References Type of study Tools Studied system Performance
indicators

Application Location Lifetime Results

Cano et al.
[96]

Economic
feasibility

HOMER
HOGA
Matlab

PV-wind-battery-
El-FC system

NPC Stand-alone
application

​ ​ The configuration is
obtained using
Simulink-Design-
Optimization in
Matlab

Fig. 4. AC bus configuration of the PV-wind system with hydrogen and battery storage.

Fig. 5. Two-bus configuration (AC and DC) of a PV-wind-battery-hydrogen system.
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Tabou Search (TS) are the most widely used algorithms for optimizing power systems with storage. The limitation of these methods is
that their efficiency depends very much on how the internal parameters (Tabu list, temperature) are constructed and used [75–77].

Algorithms based on a population of solutions, unlike single-solution algorithms, start with at least two initial solutions and modify
them at each iteration by means of operators such as crossover and mutation. There are several population-based algorithms in the
literature. However, the most widely used in PV and/or wind power optimization are generally the Genetic Algorithm (GA) and
Particle Swarm Optimization (PSO) or a hybrid of these techniques (GA-PSO). These algorithms are even integrated into Matlab
software, enabling complex non-linear problems to be solved. These methods are highly flexible, efficient especially for large opti-
mization problems, and can deliver good-quality solutions (not necessarily optimal). Their drawback is the existence of parameters to
be set in order to obtain satisfactory convergence [24,75,76]. For example, the mutation and crossover rates used in genetic
algorithms.

Artificial intelligence approaches can be hybridized between trajectory-based approaches (e.g. HSSA) and population-based ap-
proaches (e.g. GA-PSO). Authors such as Suhane et al. [78] have proposed an approach based on Ant Colony Optimization (ACO) to
obtain optimal sizing of the PV-wind hybrid system with battery storage. The numbers of modules, turbines, batteries and converters
were optimized by minimizing the system’s LCOE for a fixed LPSP of 5 %. They preferred this method over traditional methods in view
of the non-linearity of the problem introduced by the dependence on atmospheric factors of the energy sources exploited. Arabali et al.
[79] have minimized the cost and increased the efficiency of an autonomous PV-wind system with battery storage using a Genetic
Algorithm (GA) and a two-point estimation method. They also calculated the maximum storage system capacity and Excess Energy
(EE) for different percentages of charge transfer.

In [77], Maleki et al. have found the optimal configuration of an autonomous PV-wind-battery system using several artificial in-
telligence approaches namely Tabu Search (TS), Simulated Annealing (SA), Harmonic Search (HS), PSO and its variants which are:
Modified PSO (MPSO), PSO based on Repulsion Factor (PSO-RF), PSO with Constriction Factor (PSO-CF), and PSO with adaptive
inertia weight (PSO-W). Of all these applied methods, PSO with Constriction Factor (PSO-CF) performed best. Allwyn et al. [18] have
used the Genetic Algorithm (GA) based optimization tool in MATLAB, to optimize the PV field and battery size in a public lighting
PV/battery system with and without number of days of autonomy for three different lamp types, HPS, LED and discrete LED by LLSP
minimization. Taking into account the Number of Autonomy Days (NAD) and after an economic sensitivity analysis on the LCC, they
found that the LCC of the system taking into account the NAD is higher than the one without taking into account the NAD due to the
higher number of batteries required and the consequent higher cost. Bi et al. [80] have proposed a method for optimized sizing and
management of a PV-Electrolyser-Fuel Cell-Battery system aimed at improving the technical reliability of the system. In this method,
only the PV field size was optimized by the dichotomy algorithm, the other parameters (electrolyzer size, cell size, battery size) being
deduced by simple mathematical formulas.

Moreover, the method did not consider costs. Many other authors have carried out studies based on artificial intelligence methods,
also known as next-generation methods. Fares et al. [76] have evaluated ten meta-heuristic algorithms by applying them to an
autonomous PV-wind-battery system to find the optimal configuration. The ten algorithms involved are the genetic algorithm, cuckoo
search (CS), simulated annealing (SA), harmony search (HS), yaya algorithm, firefly optimization algorithm (FA), flower pollination
algorithm (FPA), Moth Flame Optimization (MFO). Among these ten algorithms, simulated annealing and the flower pollination al-
gorithm were the best in terms of offering the best-quality solution. Table 5 summarizes studies of autonomous systems with fluc-
tuating sources (solar-wind) based on artificial intelligence methods.

Fig. 6. Methods and tools for sizing autonomous systems with fluctuating sources.
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4.4. Softwares

Many tools or software for designing autonomous systems exist today. Most of these tools have been reviewed by authors such as
Belmili et al. [50], Chauhan et al. [27], Sinha et al. [88]. Among these tools, we find: HOMER (Hybrid Optimization Model Electric
Renewable) from the National Renewable Energy Laboratory in the USA. Developed in 1993 for rural electrification [88], it can be
used to simulate and optimize stand-alone or grid-connected electricity generation systems from renewable and conventional sources
on a net present cost or life-cycle basis [89]. It offers simulation with a time step of 1 h and over an entire year [24]. HOGA (Hybrid
Optimization Genetic Algorithm) from the University of Zaragoza in Spain solves single and multi-objective optimization problems. It
enables hourly simulation for the dimensioning of hybrid energy systems [88,90]. HYBRID 2 from the University of Massachusetts in
the USA is a probabilistic/time-series computational model that uses statistical methods to account for intertemporal variations and
can perform detailed long-term performance analysis, economic analysis and performance prediction of various hybrid systems. It was
developed in 1996 and can perform real-time simulations for time steps typically between 10 min and 1 h [88,91].

TRNSYS from the University of Wisconsin in the USA is a software package capable of modeling and dimensioning applications as
well as conventional buildings. It was developed in 1975 [88] and enables dynamic simulation with time steps ranging from 0.01 s to 1
h [27,88]. RETScreen from the Canadian Ministry of Human Resources is a Microsoft Excel spreadsheet based on the analysis of energy
projects for the dimensioning of different renewable energy system configurations [27,88],. PVSYST from the University of Geneva in
Switzerland is a free tool for sizing, simulating and analyzing stand-alone or grid-connected PV systems [6]. It can be used to determine
PV size and battery capacity, taking into account a user’s load profile and the acceptable duration during which the load cannot be
satisfied. It takes monthly weather data and converts it statistically into hourly data. Many of the details (inputs, outputs, limitations
and benefits) concerning these tools are recorded in Table 6.

Of all these software packages, according to the study by Mazzeo et al. [17], HOMER is the most widely used for the simulation and
optimal design of stand-alone or grid-connected systems with storage. One of the disadvantages of this software is that it does not allow
the lifetime of storage systems (battery, fuel cell) to be calculated according to real conditions of use. Battery lifetime is intuitively
taken between 3 and 15 years by users [15,16]. A summary of technico-economic studies based on the above-mentioned software is
presented in Table 7.

5. Technical and economic sizing criteria

In the literature, there are several technical and economic criteria used to assess the performance of power generation systems [7,
27,32,97]. The mention of technical criteria focuses attention on the crucial aspect of system reliability. In power generation, reli-
ability is paramount to ensure continuous and uninterrupted supply, which is essential for meeting the demands of various consumers.
Technical criteria likely encompass factors such as efficiency, capacity, availability, and resilience to disturbances or failures. These
metrics provide insights into the system’s ability to function optimally under different operating conditions and external challenges.
On the other hand, the inclusion of economic criteria highlights the importance of considering financial aspects in evaluating power
generation systems. Profitability and affordability are critical factors, especially in today’s energy landscape, where cost-effectiveness
is a significant concern. Economic criteria may involve assessing capital costs, operational expenses, revenue generation potential, and
overall return on investment. These metrics help stakeholders determine the financial viability of a power generation system and its
long-term sustainability in the market.

5.1. Technical performance criteria

Many technical criteria exist [24,25,30,97]. However, the most widely used or most important are Loss of Power Supply Probability
(LPSP) or the energy load-shedding rate, and LOLP (Loss of Load Probability) or the time load-shedding rate [59].

• LPSP (Loss of Power Supply Probability [%])

This is the fraction of the energy loss out of the energy demanded by the load for a given analysis period T [59]. It is therefore the
ratio of the sum of all LPS(t) energy loss values for the same period to the energy demanded. It is given by equation (7):

LPSP=
∑N

t=1((Pload(t) − Ptot(t))*Δt)
∑N

t=1Pload*Δt
(7)

With:
Ptot(t): total power supplied by the system, including the contribution of storage
Δt: time step of simulation and Pload :power consumed by the load.
N: simulation period or time (number of minutes or hours or days in a year)
The LPSP is the technical performance indicator most widely used in the literature for the design of power systems integrating

fluctuating sources [9–11,24,71,73,97],. It guarantees a threshold of coverage of the user’s needs. An LPSP of 0 % means that the user
will always be satisfied, whereas an LPSP of 100 % means that the user will never be satisfied.

• LOLP (Loss Of Load Probability [%])
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It is defined by equation (8) as the ratio of the cumulative time the power demand of the load was not met to the total system
operating time [72], [98]. It corresponds to the percentage in time and not in energy of load shedding or service failure over a given
period T.

LOLP=

∑T

t=0
Time(Ptot(t) < Pload(t))

T
(8)

A LOLP of 0 %means that the consumer is satisfied at all times during the corresponding period. There is a difference between LOLP
and LPSP in terms of their definition. What’s more, for the same values, the two will not necessarily give the same results in terms of
sizing. These criteria should therefore be handled with great care.

5.2. Economic performance criteria

In the literature, several economic criteria are used for economic analysis or for the optimal design of energy production systems
[71]. However, the most relevant and widely used are.

• Total cost of investment (TIC)

In the case of stand-alone systems with energy storage and using intermittent renewable energy sources, the Total Investment Cost
(TIC) is given by equation (9)) [9,59]. It represents the initial cost of all system components plus labor and installation costs.

TIC=CS*S+
∑

E
CE*Pinst +

∑

c
Cc*Pc + C (9)

With:
S: storage capacity in Wh;
Pinst: installed peak power of a source in W or KW;
CS: unit cost of storage per Wh or per storage module;
CE: unit cost of installed peak power per W or per module,
Cc: unit cost per W or per converter of a given type of power converter (inverters, transformers, choppers).
C: cost of labor and installation.
Pc: Power of converter in W or kW

• Net Present Value (NPV)

The Net Present Value (NPV) given by equation (10) reflects the real present value of a cost or income discounted by the value of
capital in year n. It considers the initial investment cost, the net present value of replacement costs and the net present value of
Operation and Maintenance costs [9,59,73]:

NPV=TIC+ NPVREP+NPVOM (10)

Operating and maintenance (OM) costs are current annual costs and can be discounted by an overall discount factor Fa. Several
formulations of this factor exist in the literature [9,59,73]. However, in all cases, it depends on the lifetime of the project and the real
interest rate, as expressed by equation (11):

Fa(r, n)=
(1+ r)n − 1
r(1+ r)n

(11)

With r the real interest rate and n the lifetime of the system or project.
The replacement (REP) cost discount factor is differently formulated because replacement costs are periodic (not annual) costs [59,

71]. This factor depends on the component’s lifetime and the real annual interest rate [43,72], as shown in equation (12):

Fa(r,m)=
∑Nr

k=1

1
(1+ r)k*m

(12)

wherem corresponds to the component lifetime Nr the number of component replacements and k the order of component replacement.

• Total Annualized cost of System (TAC)

The TAC defined by equation (13) is calculated by taking into account the Net Present Value of total costs (initial investment,
maintenance and replacement costs) over the period, annualized via the Capital Recovery Factor expressed by equation (14) [7,9,98]:

TAC=NPV*CRF (13)
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CRF(r, n)=
r(1+ r)n

(1+ r)n − 1
(14)

With r the real interest rate and n the system lifetime (years).
In [98], the discount or real interest rate is defined by equation (15):

r=
e − i
1+ i

(15)

With e the nominal interest rate and i the inflation.

• Levelized Cost of Energy (LCOE)

The LCOE is the ratio of the total annualized cost of the system to the electrical energy produced over the lifetime of the system. It is
defined by equation (16):

LCOE=
TAC
ETOT

(16)

where ETOT is the annual energy produced.
The LCOE represents the cost to be spent to produce one kWh of energy. It fosters informed decision-making in energy planning and

policy formulation by elucidating the financial implications of adopting different energy generation technologies. Whether comparing
traditional fossil fuel-based power plants with renewable energy sources like solar or wind, the LCOE provides a standardized
framework for assessing the cost-effectiveness and feasibility of diverse energy pathways. However, special care must be taken when
making comparisons, as it is highly dependent on calculation assumptions [99,100].

6. Basic models of production and storage

When sizing or managing stand-alone systems using renewable sources such as sun and wind, mathematical modeling of the
system’s components is unavoidable. PV and wind fields are generally modeled by their power output.

6.1. Models of solar production

The power delivered by a PV array depends mainly on the type of PV module used, the solar irradiance and the ambient tem-
perature [4,28], [101,102]. The most complete model is given by equation (17):

PPV(t)=NPV*PPVSTC*fPV*
G(t)
GSTC

*
[
1 − δ

(
TmodPV (t) − TPVSTC

)]
(17)

Where TmodPV (t) = Tair(t) + G(t)
[(
Tc,NOCT − Ta,NOCT

)
/GSTC

]
(18)

With:
NPV : total number of modules in the PV field
PPV(t): Instantaneous power produced by the photovoltaic field in watts;
PPVSTC : Peak power of modular PV array under Standard Test Conditions (STC);
G(t): Average hourly solar radiation falling on the photovoltaic system matrix at at a given time t (W/m2);
fPV : PV system downgrading factor (85 %) generally due to dust;
GSTC: Solar radiation under STC condition (W/m2);
δ: Module temperature coefficient (%W/◦C);
Tmodpv (t): Instantaneous temperature of PV module (◦C);
Tair(t): instantaneous temperature of ambient air;
Tmod uleSTC : PV module temperature under STC conditions (◦C)
Tc,NOCT : Nominal module operating temperature supplied by the manufacturer (◦C);
Tair,NOCT : ambient temperature at nominal module operating temperature (20 ◦C).
The theoretical annual solar potential available at a site is given in Wh or kWh by equation (19) [27]:

ETOT =
∑8760

i=1
PPV− moy(i) (19)

With PPV− moy(i), average hourly power at the PV generator output and at the ith hour of the year.
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6.2. Models of wind power production

The power output of a wind turbine depends on the type of turbine used and the wind speed. For a wind farm, the output power can
be formulated as a function of the nominal characteristics of the wind generator by the system of equation (20) [10,11]:

PWT(t)=NWT*

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 si v(t) < vin ou v(t) ≥ vco

PWT,rated*
((

vk(t) − vkin
)

(
vkr − vkin

)

)

si vin < v(t) < vr

PWT,rated si vr ≤ v(t) < vco

(20)

With:
NWT: total number of wind turbines
PWT(t): power supplied by the wind field at each instant;
PWT,rated: Rated power of wind turbine;
v(t): wind speed at height hhub ;
vin: switching or starting speed;
vr: rated speed;
vco: cut-off speed;
k: shape factor usually applied to describe the wind speed data
The Wind speed v(t) at given height hhub is formulated by equation (21) when knowing reference speed vref at reference height href .

v(t)= vref*
(
hhub
href

)λ

(21)

Where:
λ: is the exponent of the power law, set at 0.2;
vref : reference speed at reference height href .
Knowing the output power of the wind farm allows us to evaluate the theoretical wind potential available at a given site. The

theoretical wind potential available at a given site is expressed by equation (22) [4]:

ETOT =365*24*
∑Vcut− out

v=0
PWT*f(v, k, c) (22)

With PWT the average power at the wind field outlet and f(v, k, c) the Weibull probability density function of wind speed, given by
equation (16):

f(v, k, c)=
k
c

(v
c

)k− 1
*exp

[

−
(v
c

)k
]

(23)

k is a shape parameter (k = 2 or 3) and C a scale parameter (c > 0). The two are linked by equation (17):

c=
v

Γ(1+ 1/k)
(24)

Where v represents the yearly average speed of wind and Γ Gamma function.

6.3. Model of battery storage

The storage system model is a key parameter in the sizing of a multi-source electrical power generation system with storage. In the
literature, the first, simplest and most widely used approach is based on estimating the battery’s state of charge [60,98,103].
Knowledge of the battery’s state of charge is essential for sizing and even managing fluctuating-source systems with energy storage in
batteries. The second approach consists in taking account of battery ageing over its lifetime [97,104,105]. The cycling aging model is
based on extracting the number of cycles by applying the Rain Flow algorithm to the evolution of the storage state-of-charge. The Rain
Flow algorithm is a cycle counting algorithm for estimating the equivalent cycle number for battery life assessment. Ke et al. [105]
have estimated battery lifetime using the Rain flow algorithm. The storage model applicable to any type of battery and taking account
of battery aging is given by the system of equation (25) below [106]:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

soc(t) = soc(t − 1) +
(

PG(t) −
Pload(t)

ηdcac*ηINV

)

*
ηBat
Vbus

*Δt

SOCmin ≤ SOC(t) ≤ SOCmax où SOCmin = (1 − DOD).SOCmax

TV =
∑651

N̈c=1

(
TV/C(DOD)

)
où TV/C(DOD) =

1
NC(DOD)

(25)

With:
soc: battery’s state of charge;
SOCmin: battery’s minimum state of charge
SOCmax: battery maximum state of charge
Δt: time step of simulation (30 min);
PG(t): Power supplied by all sources;
Pload(t): Power required by the load at time t;
ηBat : Battery charge-discharge efficiency, equal to 1 during charging and equal to 0.8 during discharging;
Vbus: bus voltage;
TV/C(DOD): aging rate per cycle;
TV : annual aging rate (%);
DODmax: battery’s maximum Depth Of Discharge
NC(DOD): number of charging/discharging cycles versus DOD
DOD: amplitude of battery charging/discharging cycle found by Rain flow algorithm
NcT: Total number of battery charging/discharging cycles counted on one year operation of system using Rain flow algorithm
ηINV : efficiency of the inverter.

7. Energy management techniques for stand-alone HYBRID systems in isolated locations

In order to facilitate the management of energy flows between sources, storage elements and loads, an energy management system
(EMS) is generally integrated into a stand-alone hybrid system, as shown in Fig. 7 [107]. Energy management consists in taking actions
or issuing commands while complying with a certain number of constraints in order to satisfy one or more objectives. For example, to
ensure a permanent power supply to the load, fluctuations in bus voltage can be avoided by controlling the storage or controllable
sources (fuel cell or diesel generator), either by imposing current, voltage or power [107].

The EMS represents the intelligence of the system based on its own algorithms: for example, it can decide when a battery should be
charged or discharged, or when the storage system should be connected or disconnected to the source or load, depending on pro-
duction, observed consumption and the state of charge of the battery. To develop an energy management algorithm or technique, the
first step is defining the objectives to be met, the constraints to be respected and the actions to be taken. Examples of objectives,
constraints and actions are given in Table 8.

Several strategies for managing autonomous systems have been proposed in the literature. They can be grouped into two main
categories (Fig. 8): classical management techniques (current control, voltage control, power balance and centralized management)

Fig. 7. Schematic diagram of a hybrid wind-photovoltaic-fuel cell system with storage, integrating an Energy Management System (EMS).
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and artificial intelligence methods (fuzzy logic and multi-agent systems).

7.1. Classic techniques of energy management

These techniques are based on classical algorithms, i.e. sequences of instructions based on simple established rules using the
following syntax: "If … Then …; Otherwise Then … end". For example, a rule might be: "If the battery’s state of charge is between 30
and 90 %, then discharge, otherwise stop discharging". As shown in Fig. 8, these techniques include current-controlled management,
voltage-controlled management, power balance and centralized management.

7.1.1. Energy management technique with voltage control
This technique consists of imposing four battery voltage thresholds as illustrated in Ref. [107]. Two threshold voltages or a range of

bus voltages around the nominal battery voltage to limit fluctuations in bus voltage to allow continuous supply to the load. Moreover,
two further battery threshold voltages to protect the battery against overcharge and deep discharge. Energy management depends
primarily on the battery voltage control strategy. For example, if the battery voltage remains within the hysteresis band, the renewable
generators are in normal operating mode and the flow of energy to the bus is not restricted. If the battery voltage exceeds the maximum
threshold (VBat Nominal + hysteresis), then the supervisor stops charging the battery while reducing the power on the DC bus by
degrading the power of the generators (MPPT = 0) and supplying power to the load. Otherwise, if the battery voltage falls below the
limit (V Bat Nominal-Hysteresis), the system stops supplying power to the load. At this point, the MPPT is activated (MPPT = 1) to
better exploit the renewable generators until the bus voltage returns to a stable range. The battery is disconnected from the source or
load when the voltage at its terminals reaches VBat Max or VBat Min.

7.1.2. Energy management technique with current control
This management principle consists in making the best possible use of available resources by avoiding excess or deficit production

to supply the load, and monitoring the battery’s state of charge by imposing a zero Battery current in the event of overload or deep
discharge. Dackher et al. [107] have proposed this management strategy for the supervision of an autonomous PV-wind hybrid system
with battery storage. Their strategy is designed to avoid overcharging (SOC > SOCmax) and deep discharging (SOC < SOCmin) of the
battery by current control, while ensuring the distribution of the power to be supplied. It is based on two operating modes, namely
normal mode when the battery’s state of charge is between the two state of charge thresholds imposed on the battery (SOCmin < SOC
< SOCmax), and degraded mode when the estimated state of charge exceeds the thresholds as shown in Ref. [107].

Other authors such as Fathima et al. [84] have developed an energy management strategy for a PV-wind-battery system based on

Table 8
Examples of objectives, constraints and actions for an autonomous hybrid system management strategy [107–109].

Objectives Constraints Actions

Satisfy demand or ensure permanent load
supply
Make the most of production sources

Avoid battery overcharging and deep discharging.
Avoiding excess or deficit production

Connect or disconnect or reconnect load or
source.
Operate or shut down a diesel generator or
fuel cell

Protecting the storage system Avoid exceeding voltage, current, power and temperature limits
for storage

Reducing production

Maintain a constant bus voltage Avoid bus voltage fluctuations Adding a load shedder

Fig. 8. Management and supervision techniques for small autonomous systems.
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current control. Bi et al. [80] have also proposed a deterministic rule-based energy manager within a multi-source (PV-battery-fuel
cell) hybrid system. Their energy management strategy is an algorithm that determines at each instant the sharing of power between
different system components, while imposing zero power on either the battery or the fuel cell as required. The battery and fuel cell are
mobilized according to the battery’s state of charge.

7.1.3. Power balance management technique
This is the simplest energy management strategy of the classic techniques. There is no imposition of current or voltage. It is purely

power-based. With this approach, in the event of a surplus production, the technique uses the excess to charge the storage system
(battery or fuel cell), and in the event of a deficit, the storage system is mobilized to help meet demand. Kotb et al. have developed this
strategy [101], by proposing an energy strategy in which all energy conversion systems (wind and PV) operate in power maximization
mode. Valenciaga et al. [110] have modeled and simulated a power balance-based management strategy for a PV-wind-battery system.
The management objective was to satisfy the power demand by making the best possible use of the sources, with wind power as the
main source, and to regulate the battery’s state of charge to protect it and increase its service life.

In [111], Ipsakis et al. have proposed and tested three energy management strategies for a PV-wind-hydrogen-battery system
already in operation at Neo olvio de Xanthi in Greece. The objective of the management was to satisfy the power demand of the load by
efficiently exploiting the hydrogen storage system and controlling the battery. Kang et al. [112] have modeled and simulated a
management strategy for a stand-alone PV-FC-battery system in an isolated site based on a power balance. The management objective
was to increase the lifetime of storage systems by reducing the number of operating mode changes (charging and discharging) with the
help of measurement and timing elements. However, they were not concerned with the variation in their state of charge, which is an
accelerating factor in ageing.

7.1.4. Centralized energy management technique
In this approach, the elements of the electrical system (source, storage, load) are all connected to a DC bus via suitable converters.

Based on two types of controllers (central and local), it aims to maintain a constant bus voltage to ensure permanent power supply to
the load [109]. Each converter is associated with a local controller, such as an Integral Proportional (IP) controller, to control the
current supplied to or received by each element of the electrical system. The central controller receives information on the state of the
elements (state of charge of the storage, availability of sources) and then sends current or voltage references to the local controllers, as
illustrated in Fig. A single element is chosen from all the elements of the electrical system to regulate the bus voltage. The chosen
element is usually the storage for small stand-alone systems, and the grid for small grid-connected systems.

However, if the chosen element or the central controller fails, the whole system stops working. This is the major drawback of this
solution. Such a management system is governed by a long series of exhaustive rules. It is therefore difficult to design, since it involves
controlling almost all the elements of the electrical system (i.e. having information on the states of all the elements). Moreover, it’s not
open-ended, i.e. it doesn’t allow the electrical system to be extended (i.e. new elements to be added). Conventional centralized
management is suitable for multi-source, multi-storage and multi-load systems. Fig. 9 shows the principle of centralized management
for hybrid energy systems.

Torreglosa et al. [113] have modeled and simulated a centralized energy management system of an autonomous
PV-wind-hydrogen-battery system using Matlab-Simulink. The management objective was to satisfy load demand while maintaining
not only constant bus voltage but also hydrogen level and battery state-of-charge between targeted margins.

Fig. 9. Centralized Energy Management System [111].
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7.2. Artificial intelligence techniques of energy management

7.2.1. Fuzzy logic management technique
Based on the fuzzy rules, i.e. rules based on linguistic variables (low, very low, medium, high, very high…) established from digital

inputs (DP, SOC, DSOC), a specific output or action to be taken (charge/discharge current control, source operation control …) is
decided with the aim of ensuring permanent supply to the load [114–116]. The fuzzy supervisor is generally composed of three main
stages, namely fuzzification, base rules and defuzzification, as shown in Fig. 10.

It first converts numerical inputs (ΔP and SOC) via input membership functions into linguistic variables (fuzzification). Next, the
linguistic variables are used to build up bases rule on which output decisions (linguistic variable) is based. Finally, the output linguistic
variable is converted into an output numerical variable to decide on the command or action to be taken (defuzzification). Y. Chen et al.
[117] have designed and implemented an energy management system for a PV-wind-fuel cell system with battery storage using fuzzy
logic in a Matlab/Simulink environment coupled with LabView software. The objective is to ensure the energy balance between
production and consumption, while maintaining the battery’s state of charge in order to improve the battery’s life cycle. The input
variables of the fuzzy controller were ΔP and ΔSOC. The controller output was the battery charge/discharge current.

7.2.2. Multi-agent system management technique
The Multi-Agent System (MAS) is an artificial intelligence technique initially used in several fields, such as industrial applications

for process control, telecommunications or the Internet for information processing andmanagement, and robotics [118]. Today, it is of
interest in the energy field, where it is used for energy management of multi-source-multi-storage systems, such as micro-grids or
autonomous hybrid systems made up of several elements (sources, storage, loads). Each element of the system is associated with an
Agent, enabling it to be controlled either in voltage or in current via a PI controller. The Agent here can be defined as an active physical
or virtual entity in the system, endowed with intelligence capable of perceiving, communicating, acting, rendering or requesting a
service [109,119]. Unlike centralized energy management system, which has a central controller responsible for collecting all the
states of all the elements in the electrical system and then controlling all the inverter controllers, the MAS-based energy management
strategy has several agents, each of which can control an element with which it is associated and regulate the DC bus voltage while
communicating with the others [109,120].

In the case of load, the agent is rather an observer. Indeed, load control depends on the user’s needs, and does not require any
control from the power management system. A communication bus is integrated into the MAS, enabling dialogue between the Agents.
In the case of failure of one element, or if it disconnects from the communication bus, other elements can continue to normally operate.
However, if the communication bus fails, there is no longer any coordination between various agents in the system. This is the
shortcoming of MAS. The big advantage of MAS over centralized systems is that it makes it possible to build scalable or even distributed
electrical systems [109,120]. Table 9 presents the interests and limitations of the small-scale autonomous system management
techniques described above.

7.3. Energy management system design and modelling

Among the energy management techniques previously mentioned, three of them are also applicable to autonomous microgrids
integrating fluctuating energy sources such as solar and wind. These are centralized management, fuzzy logic management, and multi-
agent systems [122]. Whether concerning autonomous and micro-grids and regardless of the level of application or the energy
management technique to be implemented, modeling of the components of the electrical system or parameters to be controlled as well
as control systems is essential. Once the models of the electrical system components (sources, storage, and loads), control systems, and
management strategies are developed, they are integrated into a simulation environment to enable better analysis of the system’s
behavior based on the management objectives pursued. Modeling of control systems is generally based on two categories of mathe-
matical models [122,123], namely.

Fig. 10. Fuzzy logic controller structure for energy management system [114].
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Fig. 11. Efficiency and investment cost range of energy storage technologies suitable for storing solar or wind energy in isolated sites.

Table 9
Principles, advantages and limits of autonomous systems management techniques.

References Management
techniques

Principles/Objectives Advantages Limits

[107] Voltage control (bus
voltage regulation)

Impose a bus voltage range around the
nominal battery voltage (two threshold
voltages) for continuous supply to the load.
Impose two other battery threshold voltages
to protect against overloads and deep
discharges.

- MPPT system operation;
- Battery voltage
monitoring;

- Easy to implement.

- No monitoring of SOC and battery
current;

- Bus voltage only imposed by the battery;
- Frequent disconnections of generation
and storage sources due to high
fluctuation of battery voltage;

- Does not allow system expansion
(impossible to add a generation or
storage source).

[107] Current control
(battery current
regulation)

Make the best possible use of resources,
avoiding excess or shortfalls in production to
ensure proper supply of the load.
Impose zero battery current in the event of
overload or deep discharge by monitoring the
battery’s state of charge.

- Battery SOC
monitoring;

- Avoids frequent source
disconnections;

- Prevents battery
disconnections;

- Easy to implement.

- Does not allow electrical system
expansion;

- No monitoring of battery voltage and
current;

- No bus voltage regulation.

[110]
[111]

Power balance (no
voltage or current
control)

Mobilize sources in order of priority to
balance the energy balance, storing surplus
energy in batteries and protecting them
against overloads and deep discharges.

- Very easy to install;
- Battery SOC
monitoring.

- Only power-based management;
- Does not allow electrical system
expansion;

- No battery voltage monitoring,
- No battery current monitoring.

[113],
[109]

Centralized
management

A central controller monitors the status (SOC,
availability) of electrical system components
and makes decisions by controlling the
current or voltage of local controllers
associated with each system component in
order to maintain a constant bus voltage to
ensure permanent power supply to the load.

- Battery SOC
monitoring;

- Suitable for multi-
source, multi-storage
systems.

- Only one local controller or element is
used for bus voltage regulation;

- Standstill of the overall electrical system
in the event of failure of the central
controller or the one responsible for bus
voltage regulation;

- Difficult design;
- Does not allow electrical system
expansion.

[109],
[120]

Multi-Agent System
(MAS)

Each element of the electrical system (source,
storage, load) is associated with an agent
capable of autonomously regulating the bus
voltage while controlling all the elements of
the electrical system in terms of current or
voltage.

- Battery SOC
monitoring;

- Adaptable for scalable
power systems;

- Fault tolerance versus
centralized system.

- No coordination in case of
communication bus failure;

- Very complex design and
implementation.

[114,
115],
[117],
[121]

Fuzzy Logic Based on the fuzzy rules, a specific output or
action to be taken is decided with the aim of
ensuring permanent power supply to the load.

- Surveillance du SOC de
la batterie

- Adapter pour les
systèmes multi-sources,
multi-stockages.

- Does not allow for electrical system
expansion;

- Complex design and implementation.
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• Dynamic models (time-based) which include state models, linear, and basic quadratic models. When these basic models consider
uncertainties or time series data, they are called stochastic or deterministic models. If these models are used to predict the future
behavior of the system, they are referred to as predictive models. PI (Proportional Integral) controllers, PID (Proportional Integral
Derivative) controllers are examples of control approaches based on linear or nonlinear models. A presentation of stochastic linear
predictive model can be found in Ref. [124] and the discrete linear predictive model is presented in Ref. [125]. The two models are
widely used both in industry and for optimized energy management of electrical systems, for example to minimize operating costs
of a microgrid.

• Frequency models that are solely based on frequency. This is the case with transfer equations or functions [122].

Beyond these two categories of control system models and certains artificial intelligence algorithms presented above (genetic al-
gorithm, fuzzy logic, Deep Learning, neural network, etc.), the Internet of Things (IoT) can be used for the control of certain systems in
real-time, such as electrical systems [122,125]. In general, the choice of model type or control system type depends on the complexity
of the system, the specific objectives of modeling as well as the availability of input data.

8. Discussion

In this review article, several aspects of stand-alone solar- and/or wind power systems adapted for the electrical energy needs of
isolated sites have been addressed. These include the storage systems used, configuration types, sizing and management methods,
mathematical models of energy production and storage as well as techno-economic performance criteria.

• Storage options for remote site applications

Due to the intermittent nature of solar and wind power sources, energy storage is unavoidable for permanent load supply. Three
possible storage options for isolated site applications have been identified in the literature: batteries, supercapacitors and hydrogen
storage systems. Fig. 11, based on elements from Tables 1 and 2, shows these three storage options with their performance ranges and
investment costs per kWh of stored energy. This figure clearly shows that supercapacitors, though high-performance, are an extremely
expensive option, and therefore out of the reach of the general public. To store just 1 kWh with supercapacitors, you would need to
spend around 16,000€, which is an enormous sum.

Fig. 12 shows the cost and efficiency ranges of the hydrogen storage system and the most widespread battery technologies currently
on the market. It is clearly shown that, between the hydrogen storage system and the batteries, the most efficient and least expensive
are the batteries. In fact, the high intrinsic power consumption of hydrogen storage systems makes them less efficient. In addition to
low performance, maintenance of hydrogen storage systems is more complicated due to the complexity of the related accessories.
Fig. 12 also shows that the best compromise in terms of investment cost and performance is offered by lead-acid battery technologies.
They are not only the least expensive, but their performance is also close to that of lithium battery technologies, which are also the
most efficient. However, the main drawback of lead-acid battery technologies is their short lifetime compared with lithium battery
technologies. They do not also tolerate high depths of discharge, contrary to lithium technologies. Although lead-acid batteries enable
a project’s overall initial investment cost to be lower, they do not guarantee the lowest cost of kWh of energy produce; their short
lifetime leads to replace the storage system many times over the project’s lifetime. Thus, lithium batteries would also be a more
appropriate choice, given that storage lifetime is a key parameter in a project cost analysis.

• Hybrid stand-alone PV/Wind system configurations

In terms of types of sources and storage used, six main PV/Wind standalone configurations have been identified as shown in Fig. 2.
With regard to the type of bus connection, there are three types of configuration for such systems: DC bus configuration (Fig. 3), AC bus
configuration (Fig. 4) and DC-AC coupled bus configuration (Fig. 5). A comparison of these three configurations is shown in Table 10
below. It shows that the DC bus configuration is the most widely used, because it’s easier to size and manage. However, it involves
slightly more converters, which undoubtedly contributes to the overall cost of the system. The AC bus configuration and the DC-AC
coupled bus configuration can reduce the number of converters in the system, and therefore the cost, but they are complex to manage.

• Sizing methods and tools

There are several methods and tools for sizing stand-alone PV and/or wind power systems available in the literature. In this article,
they are grouped into four categories (Fig. 6): traditional classical methods, traditional optimization methods, artificial intelligence
methods and software. Table 11 provides a clear comparison of these four categories of techniques in terms of accuracy, complexity,
flexibility and execution time.

As shown in Table 11, traditional classical methods are not optimization methods. While they are very easy to use, they do not
provide optimal solutions. They are based on monthly or annual average values and on intuitive choices of storage autonomy (2–5
days), which very often lead to over-sizing. In addition, they do not use technico-economic performance indicators to measure or
determine the system’s level of reliability, or even its economic viability. From these difficulties, researchers have developed other
methods for optimal sizing of considered power systems, such as iterative, analytical, probabilistic, multi-objective, graphical and
integer linear programming methods, grouped here under the heading of traditional optimization methods with an acceptable level of
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accuracy. However, these methods are criticized for their limited flexibility and long execution times. Among these traditional
optimization methods, the iterative method is recognized to be the most widely used in the present study for the technico-economic
sizing of stand-alone PV-wind-battery systems. Furthermore, it can only optimize a maximum of three parameters (number of PV
modules, number of wind generators, number of days of storage autonomy). In addition, it doesn’t take into account the actual
conditions of use of the batteries when choosing the battery lifetime, which is an important parameter in cost analysis. In response to
the drawbacks of traditional optimization methods, new methods have been developed, known as artificial intelligence or new-
generation methods (AG, PSO, HR, SA, TS, etc.). These methods are flexible and can be used for complex problems with several
optimization parameters. However, they still suffer from a convergence problem and even require appropriate choices of coding
parameters to hope for good quality solutions. Thus, attempts have been made to hybridize or modify these methods (AG-PSO, HSSA,
MOPSO, …) in order to find high-quality solutions to optimization problems. Genetic algorithms and particle swarm optimization are
the most widely used artificial intelligence techniques. In addition to the above-mentioned methods, a number of software packages
(HOMER, HOGA, PVSYST, etc.) are available for designing autonomous systems. HOMER remains the most popular of them. However,
none of the sizing software packages discussed in this article, including HOMER, can predict or take into account the actual lifetime of
storage elements (fuel cell batteries). They only consider the nominal lifetimes proposed by manufacturers under regular cycling
regimes. In stand-alone systems using fluctuating sources, the things are quite different, as these storage devices are not always
subjected to regular cycling. It can happen that a discharge occurs without the charge being complete. This reality of the storage
system’s behavior must be taken into account when predicting or assessing its lifetime, which is one of the key parameters in the
technico-economic sizing of stand-alone systems. As a reminder, in the HOMER software, the lifetime of batteries is intuitively set

Fig. 12. Performance and investment cost range of the hydrogen storage system and the most common electrochemical storage technologies on
the market.

Table 10
Comparison of fluctuating-source system configurations with storage.

Configuration type Interest Limits Level of use

DC bus configuration Easy to manage High number of power converters involved High
AC bus configuration Number of power converters slightly reduced involvement Complex management Low
Two-bus configuration (DC and AC) Reduced number of converters involved Very complex management Low

Table 11
Comparison of techniques and tools for sizing PV-wind systems.

Categories of
techniques/tools

Optimization
techniques or tools

Accuracy Complexity Flexibility Run time Number of
optimization
parameters

Most popular techniques
in this category

Classic Techniques No Low Low Limited Short Very limited –
Traditional

optimization
techniques

Yes Average Average Limited Long Limited - Iterative technique
- Linear integer
programming

Artificial intelligence
techniques

Yes High High High long High - Genetic Algorithm (GA)
- Particle Swarm
Optimization (PSO)

Software Yes for some Average Low for
some

Limited Short for
some

Limited for some HOMER
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between 3 years and 15 years, and that of fuel cells between 15,000h and 40,000h for sizing or economic feasibility studies, whereas
for the same system a lifetime of 3 years chosen for batteries or 15,000h for fuel cells will not lead to the same result as a lifetime of 15
years chosen for batteries or 40,000h for fuel cells. Clearly, this parameter will have a strong influence on the result, especially from an
economic point of view. It is therefore important to consider this reality of storage behavior in design softwares.

• Energy management in stand-alone systems

Energy management in stand-alone PV and/or wind power systems with storage is essential in improving system reliability and
viability. Thus, several management strategies have been proposed in the literature. In this article, these strategies have been grouped
into two classes: classical techniques and artificial intelligence techniques (Fig. 8). Classical techniques are based on simple rules, while
artificial intelligence techniques are based on complex or fuzzy rules. Classical management techniques include voltage control,
current control, power balance and centralized control. These techniques are easy to develop and implement. However, they are only
suitable for fixed or closed stand-alone systems, as shown in Table 11. For a closed autonomous power system, contrary to a scalable
power system, it is not possible to add or subtract an element to the system without rebuilding a newmanagement algorithm. Artificial
intelligence techniques include fuzzy logic and multi-agent systems (MAS). They are much more flexible, but complex and very
difficult to implement. Of all these management techniques or strategies, MAS is the most suitable for a power system that is intended
to be scalable. This technique deserves to be explored further in order to have at less complex and easily implementable strategies for
managing open autonomous systems.

• Technical and economic performance criteria

LPSP and LOLP are the most widely parameters used technical performance indicators for measuring the reliability of PV and/or
wind power systems with storage. However, no study on the influence of these two indicators on the technico-economic sizing of
fluctuating-source systems with storage has been identified in the literature. Such a study could help determine which of the two
parameters is the best. To measure the affordability of these systems, NPV and LCOE are the most widely used. Their choice depends on
the objective set.

• Basic models of production and storage

Several PV and wind field production models exist in the literature. However, they are generally based on meteorological data
(solar irradiation and ambient temperature for the PV field and wind speed for the wind field) and the characteristics of the PV and
wind modules. In the majority of sizing studies, storage is modeled by its state of charge, which evolves according to the difference
between production and demand. However, very few studies consider the storage aging model in the sizing.

9. Conclusion

Autonomous systems based on solar and/or wind power are highly recommended for isolated sites. This research study aimed to
examine the different energy storage technologies, the types of configurations, the different technico-economic criteria, and the sizing
andmanagement techniques used for the design and/or management of such systems.Here are the main aspects of the review research.

• Among the storage options discussed, namely batteries, supercapacitors and hydrogen storage systems, batteries are recognized to
be the most widespread and widely used due to their higher maturity, lower maintenance and lower cost. From the three battery
technologies (lead-acid, nickel-acid and lithium-acid) most widely used on the market, lead-acid technology offers the best
compromise in terms of performance, service life and cost. Lithium batteries would also be a more appropriate choice, because of
their storage lifetime better than that of lead acid batteries. Supercapacitors are extremely expensive, while hydrogen storage
systems are less efficient and difficult to maintain.

• Four categories of techniques and tools for sizing PV and/or wind power systems with storage have been identified: traditional
classical techniques, traditional optimization techniques, artificial intelligence techniques and software. The iterative method and
integer linear programming are the most widely used among traditional optimization methods, while the genetic algorithm (GA)
and particle swarm optimization (PSO) are the most widely used among artificial intelligence methods. However, these methods
still suffer from convergence problems and often need to be hybridized to offer high-quality solutions.

• HOMER is the most popular used software. However, neither HOMER nor other tools or techniques take into account the storage
operating conditions when estimating the lifetime of the storage system.

• Several energy management strategies have been identified and discussed. The most flexible and best suited to scalable power
systems is multi-agent systems (MAS). However, the big challenge with MAS is the communication between agents.

• LPSP, LOLP, NPC and LCOE have been identified as the most widely used technico-economic performance indicators for auton-
omous power systems, although it should be noted that they are highly dependent on study hypothesis. An analysis of the influence
of LPSP, LOLP and storage ageing on the technico-economic sizing of fluctuating-source systems with electrochemical storage will
be carried out in future work.

The review revealed that further works are needed concerning especially the optimal choice of the storage autonomy duration and
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the assessment of the real battery lifetime, as the battery state of charge changes irregularly due to the variability of energy sources.
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[6] E. Korsaga, et al., Comparaison et détermination des dispositifs de stockage appropriés pour un système photovoltaïque autonome en zone sahélienne, vol. 4,
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