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ABSTRACT
Accurate crop discrimination is vital for effective agricultural plan-
ning and sustainability management, especially in regions like Sub-
Saharan Africa (SSA), where small-scale farming predominates and
ground data is scarce. Conducting field surveys in SSA is chal-
lenging due to labor and cost constraints, as well as logistical and
political barriers. This paper explores the feasibility of transferring
crop-type classification models between regions with similar crops.
Utilizing data from Baraouéli and Karamoja, collected from Source
Cooperative, we trained multi-layer perceptron (MLP), random
forest (RF), and support vector machine (SVM) classifiers using
Sentinel-2 imagery. These models were then evaluated and ap-
plied to cross-crop type classification between Baraouéli (Mali) and
Karamoja (Uganda) to assess the transferability of machine learning
models. While the models demonstrated strong local performance,
achieving high overall accuracy in their respective regions, their
performance declined when transferred between regions. How-
ever, focusing solely on specific crops such as maize and sorghum
improved the models’ performance, albeit with reduced accuracy
compared to local classifications. The study suggests that incorpo-
rating additional features such as texture, DEM, crop height, and
weather data could enhance the adaptability of classifiers between
regions. These findings highlight the potential for developing trans-
ferable models within SSA to address challenges related to limited
ground surveyed data, providing valuable insights for researchers
and policymakers.
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1 INTRODUCTION
The Food and Agriculture Organization (FAO) predicts that the de-
mand for food production will increase by approximately 60%[11],
primarily due to population growth [11], which is estimated to
increase by around three billion people by 2050 [5]. This surge in
demand is expected to triple in sub-Saharan Africa (SSA) over the
next 30 years, requiring an additional 140 million hectares (ha) of
land for agricultural use [31]. To decrease this pressure of agricul-
ture expansion which is one of the drivers for forest loss, and, at
the same time, to meet the escalating food demand in SSA, it is
essential to increase the productivity of the most consumed cereals,
such as maize and sorghum, particularly in regions heavily reliant
on smallholder farming [5], using a sustainable agricultural prac-
tices. Accurate and timely crop discrimination plays a critical role
in achieving these goals by enabling targeted agricultural inter-
ventions, effective agriculture planning and management, effective
resource allocation, and precise decision-making [32].

Traditionally, most SSA governments track agriculture infor-
mation, like crop types, acreage, and productivity, through agri-
culture surveys at the district level, which are mostly outdated
[5]. Moreover, these surveys are difficult, time-consuming, and
labor-intensive to conduct. Furthermore, this method may lack
spatial coverage, making it difficult to capture the variability of
crops across large agricultural landscapes. On the other hand, high-
resolution satellite imagery presents a transformative opportunity:
they can provide a comprehensive and synoptic view of agricultural
landscapes, capturing a massive amount of data related to spectral
information that reflects diverse crop characteristics. The ability
to leverage this vast amount of data lies in the development of
robust and efficient machine learning (ML) algorithms that excel
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in processing and interpreting the data, allowing rapid and precise
crop type discrimination [35].

The integration of machine learning and satellite images plays
a pivotal role in discerning subtle differences between crop types
and it enables analyzing large agricultural areas efficiently. So, this
timely and reliable information about crop types and their spatial
distribution can help decision-makers in optimizing resource allo-
cation, such as agricultural extensionists, fertilizers, and pesticides,
to the farmers according to their needs and to estimate crop pro-
duction [32]. However, even with the imperative of precise crop
identification in SSA, due to its profound impact on food security
and agricultural sustainability, there are few studies done in this
context where the majority of the population heavily relies on small
farms (< 2 ℎ𝑎) and ground data is almost absent.

The ground survey data which is scarce in many SSA countries
is paramount for crop type classification using supervised learning,
but field surveys are labor intensive and very expensive, and in
some parts of SSA are impossible to conduct due to political or
logistical reasons[30]. Consequently, it can be difficult to map crop
types with high accuracy in this region[12]. Nevertheless, many
attempts have been made to collect samples from publicly available
and annual updated existing country-wide operational crop types
mapping, such as Crop Data Layer (CDL) from the US Department
of Agriculture (USDA) and Agriculture and Agri-Food Canada’s
Annual Crop Inventory (AAFC), to train a classifier and then ap-
plying it to other site and or year. For example, Zhong et al.[38]
improved the time for early season crop type discrimination using
reference data of previous years from CDL and they achieved sat-
isfactory results. Di Tommaso et al. have shown that the synergy
between NASA’s Global Ecosystem Dynamics Investigation (GEDI)
spaceborne LiDAR and Sentinel-2 (GEDI-S2) is very promising for
crop types transfer model, as they found that GEDI-S2 performed
nearly well like the models trained on local reference samples, with
accuracies between 87% and 90% throughout US, France, and China.
The authors used CDL, Registre Parcellaire Graphique (RPG) 2019
dataset for France[8], and 2019 crop type produced by You et al.[34]
as reference datasets.

However, to the best of our knowledge, there is no product
like CDL and AAFC in SSA region and, as in the local crop types
mapping, these attempts are more concentrated in developed coun-
tries such as China, Canada, and USA, which hamper the decision-
making related to food security. So, starting from the principle that
the phenological and growing patterns of the same crop are more
similar than that of different crops, even between different regions
of the world [12]. Based on this assumption, we can hypothesize
that an ML model trained in one site and year can be applied suc-
cessfully to another place in the same or different year, ignoring the
rapid inter-annual seasonal changes and the differences in regional
climates which can affect the crop progress, thereby the spectral
response[17, 30].

Our objective is to leverage reference samples from Baraouéli
and Karamoja, accessible via Source Cooperative (formerly Radiant
MLHub), to train three widely utilized machine learning models
for crop type discrimination using Sentinel-2 imagery: multi-layer
perceptron (MLP), random forest (RF), and support vector machine
(SVM) in a single location (either Baraouéli or Karamoja). Sub-
sequently, we will assess and deploy these models in a different

location and year from the training data to investigate the feasi-
bility of transferring a machine learning model trained in Mali to
accurately identify crop types in Uganda, and vice versa, relying
solely on spectral information.

2 MATERIALS AND METHODS
2.1 Study regions
This study considers two regions—Baraouéli, Mali, and Karamoja,
Uganda—their localization and topography are depicted in Figure 1.
These two regions are chosen first because of the availability of
reference data and secondly due to their similarities in climate
which leads to almost the same growing season for most of the
crops such as maize and sorghum [21].

Climate. Baraouéli is characterized by a semi-arid climate with
two distinct seasons: a rainy season from June to October and a
dry season from November to May. The average temperature of the
winter is 25.6 °C and the summer average temperature is above 30°C.
Annual precipitation varies between 600 mm and 900 mm, ranging
from 0 mm in the driest months (February—December) to 270 mm
in the wettest (August). Similarly, Karamoja experiences a semi-arid
with distinct wet and dry seasons [7]. The dry season is a prolonged
one, typically lasting from December to March and the Wet season
usually occurs from April to November, with the heaviest rainfall
falling between June and September. Temperatures averaging 30.5
°C (maximum) and 16.5 °C (minimum). The annual precipitation
varies between 500 mm to 1000 mm and its distribution is uneven
with some areas receiving more precipitation than others [7].

Agriculture profile. Like in many SSA countries, agriculture is
dominated by smallholder farms (fields between 0.5 and 5 ha) in
both regions, and sorghum, maize, and finger millet are the most
dominant crops [7, 9].

Topography. The Baraouéli’s terrain is mostly flat with some
undulating areas and it has an average elevation of 316.08 m above
the sea [10], while Karamoja is situated on a large plateau with hills
and plain terrains, and with an average elevation of approximately
1287.05 m above the sea level (Figure 1).

2.2 Data collection and preparation
This study uses a combination of two spaceborne sensors: Sentinel-
2 and PlanetScope. Multiple dates of images from Sentinel-2 Level
1C Top-Of-Atmosphere data (TOA) with less than 20% of cloud
cover were downloaded from May to September (grown season of
maize and sorghum) of 2017 (Karamoja) and 2019 (Baraouéli) using
Google Earth Engine (GEE). The bands with 20 m spatial resolution
(B5, B6, B8A, B11, and B12) were resampled to 10 m to match the
bands B2, B3, B4, and B8 (Table 1) and the TOA images were cloud
masked using built-in GEE algorithm with a Quality Assessment-60
(QA60) band that controls clouds and cirrus pixels, and visually
observation of the masked images. Then, we chose one image for
each month in Baraouéli because it covered the entire region with-
out severe cloud problems and we ended up having four images
(Table 1) for the entire grown season. Whereas, for Karamoja, we
did a mosaic of all imagery available for each month to cover the en-
tire region, thereby we retrieved 18 images from May, 47 from July,
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Figure 1: Study regions: (1) Baraouéli located in Mali and
Karamoja located in Uganda, (2) Extent of Baraouéli com-
mune with its topography and in-situ data, (3) Extent of
Karamoja with its topography and in-situ data

56 from August, and 42 images from September (Table 1). Images
from June were not included due to their unavailability in Baraouéli.
However, it is worth noting that we didn’t convert the images to
Surface-Reflactance (SR) due to several challenges including the
lack of an efficient GEE algorithm for radiometric corrections, un-
availability of the processor Sen2Cor for Sentinel-2 Level 2A (SR),
and limited SR data in GEE for the study regions. In addition to the
Sentinel-2 bands, we derived the six most used radiometric indices
for crop type discrimination in SSA based on a systematic literature
review we did: Meris Terrestrial Chlorophyll Index (MTCI), Nor-
malized Vegetation Index (NDVI), Green Chlorophyll Vegetation
Index (GCVI), Normalized Difference Water Index (NDWI), Soil
Adjusted Vegetation Index (SAVI), and Enhanced Vegetation Index
(EVI). The equations of these indices are reported in Table 1.

From PlanetScope Basemaps [23], we retrieved PS Tropical Nor-
malized Analytic Biannual Archive quads from through Norway’s
International Climate and Forest Initiative (NICFI) [22] program
in QGIS using Planet QGIS Plugin, then we composed a mosaic
of the quads. Later, the mosaic was used to add polygons for four
land use categories: tree, built, bare soil, and water which were not
present in ground truth data for the two regions. During the adding
process, we explored the false color composite and NDVI to extract
these categories.

Finally, the reference datasets for the two study regions were
collected from Source Cooperative [6], former Radiant MLHub.
The Baraouéli Cercle ground truth data were 2019 Mali Crop-type
Training Data for Machine Learning. This dataset was produced by
the NASA Harvest team through field visits using Mobile Phone
GPS with continuous point capture of the entire field boundary.
The observed and recorded data in the ODK application were: no
data, millet, maize, sorghum, and rice. Based on this ground survey,
the labels identified were further vectorized over the Sentinel-2
grid and provided as raster files [20]. From the raster files, we

joined them, converted them into shapefiles, and then extracted
maize and sorghum as the target crops for our study because these
are the labels available in the Karamoja in-situ data. We found 16
polygons for maize and 22 for sorghum. Moreover, we extracted
training and testing sample points for each class and we reprojected
the results from EPSG:4326-WGS 84 to EPSG:32629-WGS 84/ UTM
zone 29N to match the Sentinel-2 data exported from GEE. We
used random points in the polygons processing toolbox with 40
points per polygon and a minimum distance between the points of
2.5 meters, thereby we got 640 pixels for maize, 842 for sorghum,
774 points for trees, 887 for built-up areas, 720 for bare soil, and
786 pixels for water. From each of these points, we divided into
70% training and 30% testing (Figure 1) using a random selection
algorithm. All these data preparation were done in QGIS 3.34.4-
Prizren [25].

The Karamoja subregion reference data were Dalberg Data In-
sights Uganda Crop Classification collected by the Dalberg Data
Insights team over a ground survey at the end of September 2017
using tablet-enabled GPS to capture a sample of a field in a quadrant
way [15]. The recorded crop types were maize and sorghum. A data
quality control was done by Radiant Earth Foundation to check
the polygons using Sentinel-2 and Google basemap images of the
crops growing season before their publication in Radiant MLHub
(now Source Cooperative), so there were several polygons removed
which overlapped with infrastructure or built-up areas [15]. The
final data were vectorized and provided in geojson format. From the
geojson files, we joined them and converted them into shapefiles,
besides the separation between maize and sorghum to generate
training and testing pixels easily. We found 108 polygons for maize
and 126 for sorghum and their shapefiles were in the same pro-
jection as Sentinel-2 imagery, consequently, we did not do any
reprojection. As in the Baraouéli dataset, we used random points in
polygons and random selection algorithms to get pixels for machine
learning model training and testing. As a result, we got 1620 pixels
for maize, 1512 for sorghum, 1431 for trees, 1465 points for built-up
areas, 1500 for bare soil, and 1318 pixels for water. These points
were further divided into training (70%) and testing (30%) like in
the Baraouéli data (Figure 1).

2.3 Data analysis
Supervised classification models in remote sensing have been ex-
tensively utilized to identify crop types globally [27, 28]. This study
employs three commonly used techniques—random forests (RF),
support vector machine (SVM), and deep learning (DL) with dense
layer architecture—to classify crop types in SSA. The classifiers
were applied to distinguish crops and other land use categories
in Baraouéli (2019 growing season) and Karamoja (2017 growing
season) using spectral bands and radiometric indices as inputs.

The RF is an ensemble technique that comprehends a set of de-
cision trees created by drawing a subset of training data using a
bootstrap aggregation and the final decision is obtained by majority
votes of the decision trees and it has been successfully used in crop
discrimination[18, 29]. Therefore, we employed the default param-
eters of RandomForestClassifier method from Python’s scikit-learn
package except for the number of decision trees (n_estimators)
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Table 1: Sentinel-2 acquisition dates, bands, and spectral indices.

Region Image date and
quantity

Features
Bands and spatial

resolution Indice & equation

Baraouéli
(Mali)

26/05/2019; 25/07/2019;
14/08/2019; 03/09/2019

(4 images).
B2, B3, B4, B8

(10 m);
B5, B6, B8A,

B11, B12 (20 m).

𝑀𝑇𝐶𝐼 =
𝐵8(𝑁𝐼𝑅) − 𝐵5(𝑅𝐸1)

𝐵5 − 𝐵4(𝑅𝑒𝑑 )
𝑁𝐷𝑉 𝐼 =

𝐵8 − 𝐵4
𝐵8 + 𝐵4

𝐺𝐶𝑉 𝐼 =
𝐵8

𝐵3(𝐺𝑟𝑒𝑒𝑛) − 1

Karamoja
(Uganda)

02-25/05/2017 (18 images);
01-29/07/2017 (47 images);
03-28/08/2017 (56 images);
07-27/09/2017 (42 images).

𝑁𝐷𝑊 𝐼 =
𝐵3 − 𝐵8
𝐵3 + 𝐵8

𝑆𝐴𝑉 𝐼 =
𝐵8 − 𝐵4

(𝐵8 + 𝐵4 + 𝐿) × 1 + 𝐿

𝐸𝑉 𝐼 = 𝐺 × 𝐵8 − 𝐵4
(𝐵8 +𝐶1 × 𝐵4) − (𝐶2 × 𝐵2 + 1)

which was set to 340 with the optimal accuracy after testing dif-
ferent numbers of decision trees from 100 to 500. The datasets
were randomly split following a classific approach 70%-30% into a
training and a test set, respectively. Moreover, we used out-of-bag
(OOB)[4] accuracy to measure the RF model’s overall accuracy.

An SVM is an ML algorithm that aims to find the optimal hy-
perplane that maximizes the distance between the closest training
sample and the separating hyperplane in the feature space using
different kernel functions[19]. It has been successfully used in crop
identification in the context of SSA [2, 3]. In this study, we used
the most common kernel function among the remote sensing com-
munity which is radial basis function (RBF) [2] within support
vector classifier function (SVC) from Python’s scikit-learn SVM
with default parameters, excepting the cost which was set to be 50.

The DL is a subfield of ML that involves the use of neural net-
works with multiple processing layers to learn complex represen-
tations of data with multiple levels of abstraction [16]. There are
different architectures of DL proposed for solving different prob-
lems such as multi-layer perceptron (MLP) and convolutional neu-
ral networks (CNN) which have achieved remarkable success in
many domains including crop types discrimination[24, 33]. In this
way, we developed and used an MLP for crop identification as
our data were structured using Python’s TensorFlow library with
Dense and Sequential functions with Leaky ReLu[1] and Linear
activations(Figure 2). The parameters were trained using Sparse-
CategoricalCrossentropy Kera’s loss function and Adam algorithm
optimizer with integrated softmax output function to handle the
numerical round-off error[1]. The learning rate for the optimizer
was set to 0.01 for Baraouéli and 0.00001 for Karamoja after many
parameter tuning attempts.

The efficacy of the models was assessed through two metrics:
overall accuracy (OA) to determine how many pixels a model pre-
dicted well and f1-score, which measures precision and recall at
once, to determine how well and completely a classifier does a
prediction [26].

3 RESULTS AND DISCUSSION
The results are presented by observing three experiments: results
on local data, transferability from Baraouéli to Karamoja, and trans-
ferability from Karamoja to Baraouéli region.

Figure 2: Multi-layer perceptron architecture.

3.1 Experiment 1: Performance of the classifiers
on local data

Experiment 1 utilized multi-temporal spectral bands and radio-
metric indices throughout the entire growing season of maize and
sorghum in both regions. Table 2 presents the classification results
from Baraouéli, Mali. All models achieved high overall classification
accuracies, with the deep learning model recording the lowest at
97%. The classes Bare Soil and Built exhibited excellent performance,
achieving an F1-score of 1.00 in the deep learning model, and the
random forest and support vector machine models. Karamoja’s re-

Table 2: Multi-temporal spectral bands and indices overall
accuracy and f1-score for maize, sorghum and additional
classes for all classifiers in Baraouéli (Mali)

Class MLP RF SVM
OA f1-Score OA f1-Score OA f1-Score

Maize

0.97

0.94

0.99

0.97

0.98

0.96
Sorghum 0.96 0.97 0.97
Tree 0.98 0.99 1.00
Built 0.99 1.00 1.00
Bare_Soil 1.00 1.00 0.98
Water 0.97 0.99 0.99

sults are presented in Table 3. For this region, RF and SVM classifiers
achieved high accuracies of 94% and 93%, respectively, whereas the
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MLP model showed a lower accuracy of 82%. Importantly, while
these models are the same as those used for Baraouéli, they show
reduced accuracies with this dataset. The MLP model particularly
struggled with the sorghum, tree, and built classes.

Table 3: Multi-temporal spectral bands and indices overall
accuracy and f1-score for maize, sorghum and additional
classes for all classifiers in Karamoja.

Class MLP RF SVM
OA f1-Score OA f1-Score OA f1-Score

Maize

0.82

0.82

0.94

0.95

0.93

0.94
Sorghum 0.78 0.93 0.92
Tree 0.79 0.93 0.92
Built 0.76 0.92 0.87
Bare_Soil 0.82 0.93 0.92
Water 0.98 1.00 0.99

Overall, themodels performed verywell, exceptMLP onKaramoja
data, thereby they can be used in crop identification problems using
spectral bands and radiometric indices.

The main goal of this study is to evaluate the transferability
of these supervised models between different geographic regions
and years to tackle the scarcity of in-situ data. To this end, in
the experiments 3.2 and 3.3, the classifiers trained on data from
Baraouéli are applied to Karamoja and vice versa.

3.2 Experiment 2: Transferability from Mali to
Uganda

In this experiment, the models that were used for the classification
of data in Baraouéli, Mali are applied to the Karamoja, Uganda
dataset to assess their performance.

We observed that all the classifiers trained on the Mali dataset
performed poorly (see Table 4) when applied to the Uganda dataset,
revealing a lot of class pixels confusion between these two regions
as shown in the confusion matrices in Figure 3. This can be related
to the differences in Sentinel-2 backscatter values in each class due
to climate and soil differences. For example, from the confusion
matrices in Figure 3, we perceive that the MLP model with OA of
11% predicted almost all Ugandan pixels as water, the RF with OA
of 11% and highest f1-score in sorghum of 26% mostly predicted
the Ugandan pixels as sorghum and water, and that the SVM (17%)
estimated all class pixels as bare soil.

Table 4: Overall accuracy and f1-score of transferred models
from Mali to Uganda

Class MLP RF SVM
OA f1-Score OA f1-Score OA f1-Score

Maize

0.11

0.00

0.11

0.01

0.17

0.00
Sorghum 0.01 0.26 0.00
Tree 0.00 0.00 0.00
Built 0.00 0.00 0.00
Bare_Soil 0.00 0.00 0.27
Water 0.00 0.05 0.00

The detailed examination of class-specific classification perfor-
mance (f1-scores), as presented in Table 4, shows that both the
MLP and SVM models underperformed compared to the RF model,
which identified sorghumwith an f1-score of 26%. Given the notable
performance of RF in predicting sorghum, we conducted a binary
classification focusing solely on crop types to further analyze the

Figure 3: Confusion matrices of MLP (left), RF (middle), SVM
(right) trained with Mali dataset and tested with Uganda data

behavior of the models. As presented in Table 5, MLP demonstrated
the highest OA of 53%, which is reasonably better when compared
to both RF and SVM, which each registered an OA of 49%.

It is important to note that sorghum was detected with an F1-
score above 64%, indicating that all models have potential for ef-
fective use. Further, integrating additional features such as texture
(from GLCM), climatic data (temperature and precipitation), along-
side Digital Elevation Models (DEM) and soil type information,
could significantly enhance the accuracy and reliability of these
classifiers in identifying sorghum.

Table 5: Overall accuracy and f1-score of transferred models
from Mali to Uganda using crops only

Class MLP RF SVM
OA f1-Score OA f1-Score OA f1-Score

Maize 0.53 0.23 0.49 0.00 0.49 0.00
Sorghum 0.67 0.65 0.65

From the confusion matrices (Figure 4), it’s clear that all classi-
fiers confused all maize pixels as sorghum, with the expectation
of MLP which predicts 203 pixels as true class maize. This tells us
the Sentinel-2 backscatter collected in Baraouéli for maize is very
different from those collected in Karamoja. Whereas, for sorghum
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the spectral responses are very similar. As such, there is a need for
further research in feature engineering to identify the features that
will help to improve the discrimination of the crops, mainly the
maize.

Figure 4: Confusion matrices from left to right:MLP, RF, and
SVM trained with Mali dataset and tested on Uganda data
using crops only.

3.3 Experiment 3: Transferability from Uganda
to Mali

In this experiment, the models trained on Karamoja data are used to
classify Baraouéli data. Similarly to the experiment in 3.2, the three
classifiers also had poor performance: the deep learning model had
an OA of 14%, 16% for RF, and SVM had an OA of 19% (Table 6).

These classification accuracy results are lower than those of the
local models, indicating the differences in the spectral responses of
the classes between Karamoja and Baraouéli. Nevertheless, different
from experiment 2, between the crops the RF had zero predicted
pixels as sorghum, same as SVM, but the highest f1-score was 28%
achieved by MLP for sorghum, indicating that few sorghum feature
values in Karamoja are similar to those in Baraouéli.

Table 6: Overall accuracy and f1-score of transferred models
from Uganda to Mali

Class MLP RF SVM
OA f1-Score OA f1-Score OA f1-Score

Maize

0.14

0.00

0.16

0.00

0.19

0.00
Sorghum 0.28 0.00 0.00
Tree 0.13 0.00 0.00
Built 0.20 0.05 0.32
Bare_Soil 0.10 0.27 0.00
Water 0.00 0.00 0.00

The class spectral values differences were highlighted by Figure 5
with pixels distribution structure different from those predicted
using model trained in Baraouéli with Karamoja dataset, as here
the SVM estimated all pixels as built instead of bare soil, the RF
considered almost all spectral responses as bare soil to detriment of
water and sorghum, and finally the MLP had no clear concentration
of the pixels, but it worth noting that there is no pixel predict as
maize. One plausible reason for these misclassifications is that the
spectral differences are bigger between the two regions, thereby
the features are less informative.

Figure 5: Confusion matrices of MLP (left), RF (middle), SVM
(right) trained with Uganda dataset and tested withMali data.

Similar to experiment two, we have applied a binary classification
using only maize and sorghum to assess the performance of the
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models with crops only. Unlike in the former experiment, the MLP
had the lowest OA of 42%, followed by RF with 43%, and the highest
OA of 48% was achieved by SVM (Table 7). However, it is worth
highlighting that the MLP had a reasonable identification of maize
with an f1-score of 40% which is the highest score in all experiments
for this crop (Table 7). Additionally, sorghum, as in the previous
experiment, was estimated with the highest f1-score of 64% by SVM,
followed by RF with 59%, and MLP had the lowest f1-score of 44%
(Table 7). These results, similar to those in experiment two, indicate
limited similarity in spectral response or phenological patterns
due to varying weather conditions and crop management practices
across the two regions and years [12, 14].

Table 7: Overall accuracy and f1-score of transferred models
from Uganda to Mali using crops only

Class MLP RF SVM
OA f1-Score OA f1-Score OA f1-Score

Maize 0.42 0.40 0.43 0.05 0.48 0.00
Sorghum 0.44 0.59 0.64

To identify where the greatest confusion between class pixels
occurred, we analyzed the confusion matrices for each classifier,
as illustrated in Figure 6. We observed that similar to the findings
in experiment two (see Figure 4), RF and SVM classifiers predomi-
nantly misclassified pixels as sorghum. Conversely, the MLP model
exhibited a broader distribution of spectral responses among the
crops, with substantial confusion between the spectral responses of
sorghum andmaize, and vice versa. Additionally, theMLPmodel fre-
quently misidentified maize spectral responses as those of sorghum.

In summary, the three models (MLP, RF, and SVM) demon-
strated strong local performance, achieving an average OA of 98%
in Baraouéli (Mali) and 90% in Northern Uganda. However, when
expanding the classification to include all classes, the transferability
of the classifiers, as measured by OA and f1-score, diminished due
to differences in the spectral responses. The differences are well
depicted by Figure 7 which shows the spectral indices correlations
of the two places on the top diagonal, highlighted by the orange
line.

Notably, performance improvements were observed when the
classificationwas limited to just two crops: maize and sorghum. This
enhancement was primarily due to the consistency in the spectral
responses of sorghum across both regions and different years. It is
well established that if the crop conditions in the reference and test
sites are similar, then the transfer of reference knowledge can yield
high accuracy, and the reverse is also true[13]. Consequently, the
MLP and RF models could potentially be adapted from Karamoja
to Baraouéli and vice versa to specifically identify sorghum, albeit
with a slight drop in accuracy compared to local classifications.
While incorporating additional features such as texture, DEM, crop
height (derived from Lidar data)[27], temperature, and precipitation
could further enhance the performance of these transferred models,
these are beyond the current study’s scope. Moreover, as Lin et
al.[17] suggest, integrating data from other sensors like Sentinel-
1, PlanetScope, and SkySat could capture additional features that
enhance the classification accuracy.

Similar findings were reported by Wang et al.[29], who observed
that the similarity in Growing Degree Days (GDD) between two

Figure 6: Confusion matrices from left to right: MLP, RF, and
SVM trained with Uganda dataset and tested on Mali data
using crops only.

regions correlates positively with the performance of machine learn-
ing models, particularly Random Forest. However, they noted that
GDD may be less applicable in regions where temperature is not a
critical factor for crop growth. Thus, it is recommended to explore
alternative metrics such as precipitation, Digital Elevation Models
(DEM), and crop height. These factors could prove invaluable in Sub-
Saharan Africa, where in-situ data are scarce, making it challenging
to train supervised models. Further, Zhang et al. [36]—in their study
that used CNN, RF, and XGBoost algorithms alongside Sentinel-2
imagery to distinguish between rice and non-rice fields— discovered
that these classifiers when transferred from one region to another
exhibited lower accuracy than those calibrated and validated locally.
Furthermore, they recognized that the generalizability of machine
learning models remains a challenge because even slight variations
in data patterns can lead to misclassifications: if the testing dataset
deviates from the training samples, the model’s performance will
degrade[37]. This issue underpins the observed decline in classifica-
tion accuracy when transferring classifiers across different regions
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Figure 7: Radiometric indices correlation between Baraouéli
and Karamoja for August: maize on the left and sorghum on
the right.

and years. This topic is currently a vibrant subject of debate within
the remote sensing community. Some researchers, holding a pos-
itivist view, advocate that a model trained in one region can be
applicable elsewhere and in different years[27, 37], while others
assert the contrary, pointing out that variations in crop spectral
responses driven by environmental differences such as climate and
soil type prevent such applicability [30].

4 CONCLUSIONS
This paper evaluated the transferability of MLP (DL), RF, and SVM
classifiers for crop types discrimination between Baraouéli (Mali)
and Karamoja (Northern Uganda) in different years using only spec-
tral bands and radiometric indices. Training dataset were retried on
Source Cooperative for the two regions. Therefore, the followings
are the key conclusions: (i) the three models (MLP, RF, and SVM)
demonstrated strong local performance, achieving an average OA
of 98% in Baraouéli and 90% in Karamoja. However, the accuracies
of the transferred classifiers when using all catergories, as mea-
sured by OA and f1-score, were diminished drastically; (ii) using
only the crops (maize and sorghum), the performance of the mod-
els were improved partially due to the consistency in the spectral
responses of maize and sorghum across the two regions in different
years; (iii) the MLP and RF models could potentially be adapted
from Northern Uganda to Baraouéli and vice versa to specifically
identify sorghum, albeit with a slight drop in accuracy compared
to local classifications; (iv) incorporating additional features such
as texture, DEM, crop height, temperature, and precipitation could
further enhance the performance of these transferred models.
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