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Abstract: Globally, 77% of the elderly aged 65 and above suffer from multiple chronic ailments,
according to recent research. However, several barriers within the healthcare system in the developing
world hinder the adoption of home-based patient management, hence the need for the IoMT, whose
application raises security concerns, particularly in authentication. Several authentication techniques
have been proposed; however, they lack a balance of security and usability. This paper proposes
a Naive Bayes based adaptive user authentication app that calculates the risk associated with a
login attempt on an Android device for elderly users, using their health conditions, risk score, and
available authenticators. This authentication technique guided by the MAPE-KHMT framework
makes use of embedded smartphone sensors. Results indicate a 100% and 98.6% accuracy in usable-
security metrics, while cross-validation and normalization results also support the accuracy, efficiency,
effectiveness, and usability of our model with room for scaling it up without computational costs
and generalizing it beyond SSA. The post-deployment evaluation also confirms that users found
the app usable and secure. A few areas need further refinement to improve the accuracy, usability,
security, and acceptance but the model shows potential to improve users’ compliance with IoMT
security, thereby promoting the attainment of SDG3.

Keywords: elderly patients; SSA; chronic ailments; risk calculation; adaptive authentication;
smartphone; usable security

1. Introduction

Around 77% of the global elderly population, aged 65 and above, suffer from chronic
diseases like stroke, hypertension, asthma, diabetes, and cognitive impairment [1]. In the
United States, 95% of individuals over 60 years old suffer from at least one chronic illness,
while 80% grapple with multiple conditions [2]. Even the elderly population in Sub-
Saharan Africa (SSA), comprising 3.06% of the overall population [3,4], is vulnerable to
health-related issues. At the same time, the provision of basic, high-quality, and affordable
healthcare has posed a universal dilemma. The growing elderly population significantly
impacts their societies and families [5,6], and inadequately staffed healthcare facilities pose
challenges in accommodating all patients [7].

The recent COVID-19 pandemic has accelerated the adoption of home-based care [8,9],
prompting the integration of the Internet of Medical Things (IoMT) to support health-
care stakeholders both within and outside healthcare settings. The progression of sen-
sor technologies and mobile devices has accelerated the adoption of the IoMT [10] with
smartphones being integrated into the IoMT for telemedicine applications due to their
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affordability and sensor availability, enabling non-invasive vital parameters monitoring,
communication, and healthy behavior encouragement.

However, the implementation of the IoMT faces challenges concerning the privacy and
security of patient data [9,11,12]. Generally, Internet of Things (IoT) systems cater to both
technical and non-technical users [13], but most end users, including elderly individuals,
lack technological proficiency and are unlikely to implement security measures, making
them susceptible to potential attacks [14]. At the same time, the development of security
protocols often fails to account for the health issues prevalent in older populations [15,16],
but when it comes to authentication, elderly users have their authenticator preferences [17].

Although smartphones are commonly utilized for authentication purposes, there is
little empirical support regarding their effectiveness across various age demographics, in-
cluding the elderly [5]. Despite ongoing research on suitable authentication techniques [1],
there is a lack of extensive research on the practicality of authentication technologies for
senior citizens and individuals with disabilities [18]. Most previous research has either
focused on device authentication [19], security without usability and vice versa [20–22],
physiological authentication [23], health monitoring and well-being only, and does not
consider user age. As a result, there is essentially a dearth of research on IoMT user authenti-
cation that takes into account senior users’ capabilities. Since smartphones are widely used
devices that people of all ages can use for communication and other purposes, they make
good candidates for use in IoMT authentication. Therefore, research on smartphone-based
user authentication mechanisms for the elderly is crucial.

This research aimed to improve usable security by developing and implementing an
Android-based adaptive authentication system for elderly IoMT users.

The primary objectives were as follows:

(i) Develop a Naive Bayes Android-based adaptive authentication model for IoMT hard-
ware and software that considers elderly users’ medical conditions and risk scores for
suitable authenticators;

(ii) Assess the effectiveness of the proposed model in authenticating elderly users.

The selection of an Android device was predicated on its widespread availability
in the SSA region, with a substantial market share of 83.6%, in stark contrast to Apple’s
14.35% [24]. Our proposed work is novel in that it leverages users’ existing technology to
authenticate them, taking into account their age, medical condition, risk score, and available
authenticators to ascertain the level of difficulty of their authentication procedure based on
their updated trust score. Most previous works have yielded solutions that have not been
practically tested. We anticipate that this research will lead to increased user authentication
compliance, which will encourage the usage of the IoMT and, in turn, encourage the
use of technology to help achieve Sustainable Development Goals (SDG3), which are to
improve the health and well-being of all people, regardless of age. In contrast to behavior-
based authentication, which primarily entails continual authentication that is difficult and
expensive for elderly users, this effort concentrates on physiological-based authentication
and initial login. This is because even though there exist hands-free, one-time, continuous
authentication schemes [25–31], they come with additional hardware and require more
movements among the elderly, thereby increasing cost and inconvenience.

The rest of the paper is organized as follows: Section 2 analyzes the various authenti-
cators available and their strengths and weaknesses. Related work is discussed in Section 3.
The details of our proposed framework are discussed in Section 4. The results and findings
are presented in Section 5. A discussion of results is presented in Section 6. Finally, Section 7
concludes and provides future work.

2. Analysis of Various Authenticators

Despite widespread recognition, there is a lack of proactive measures to address
emerging threats on IoMT devices, hindering the implementation of effective mHealth
applications. Around 60% of smartphone users do not use security measures, and mobile
platforms often use explicit authentication [32]. Elderly individuals with chronic conditions
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like arthritis, Parkinson’s, and osteoporosis face challenges in utilizing some authentication
systems [32], making them more susceptible to security breaches [33]. Authentication is a
critical component in maintaining network security [34], acting as the first line of defense
against potential attacks. Multi-factor authentication (MFA) combines knowledge-based,
physiological, and behavioral candidate authenticators, requiring attackers to have to break
another barrier if one factor is compromised [35]. Figure 1 shows examples of factors used
in MFA.

Figure 1. Examples of factors used in MFA. Reproduced with permission from Hazratifard et al. [9].

We now examine the appropriateness of the following authenticators for elderly users.

2.1. Knowledge-Based Authenticators
2.1.1. Personal Identification Number (PIN)

A PIN is an old, secure, maskable, and quick authentication method that uses a
combination of four or six numbers [36]. It is liked by the elderly [17], can defeat shoulder
surfing, but is easily forgotten, making it less suitable for the elderly.

2.1.2. Textual Password

This old authentication mechanism, which can contain special and alphanumeric sym-
bols, is more resistant to brute-force attacks than PINs [37]. However, elderly individuals
often struggle with password input due to arthritis, early-stage dementia [5], deteriorating
vision [38], frustration [36], and lack of prior technology exposure [39].

2.1.3. Graphical Password

Images, instead of alphanumeric characters, are utilized for memory stimulation and
are easier to remember than text [36], making them more accessible to elderly users.

2.1.4. Face Recognition

Faces serve as a verification system for senior citizens, allowing easier memory reten-
tion and selection from a set of saved faces.

2.1.5. Pattern Lock

Users draw recognizable patterns on a three-by-three grid, which is usable and less
time-consuming than a PIN but may be frustrating for dexterity-deficient adults [36] and
susceptible to side-channel attacks. Fingertips can leave a distinctive trace on the screen.

2.1.6. Musipass

Musipass is easy to remember, allows users to choose their preferred music as their
password [39], but may not be suitable for elderly individuals with typing difficulties.

2.2. Biometric Authenticators

Biometrics identify living individuals by utilizing physiological attributes as well as
behavioral traits for accurate individual authentication [40]. Biometric traits are widely
used as authenticators in mobile devices combining the “what you have” and “what you
are” dimensions [9]. Of late, most IoT devices are improving their sensorial abilities,
enabling user data collection for authentication [9], with success significantly influenced by
user experience [41].



J. Cybersecur. Priv. 2024, 4 996

2.2.1. Physiological-Based Biometric Authenticators

Machine vision and sensor-based techniques are used in human motion behavior
feature extraction; the former is difficult and subject to environmental influences, while the
latter is inexpensive and not affected by them [42].

Fingerprint/Palm

Although older users prefer fingerprint authentication [32], they are less likely to
successfully authenticate using it. Off-the-shelf smart devices now offer scanner capture
technology [43], but factors like aging, moisture, gender, medical, and occupation can
hinder its effectiveness [41].

Ocular/Eye Scanner Scanning

The eye, through the iris or retina can be used for authentication. The scanner is
costly and less common, and its authentication process may be impeded by factors like
spectacles [43], age, and environmental light intensity [41].

Voice Recognition

Most devices come with built-in microphones that can be utilized for voice capture
and authentication. The user’s state or age can significantly impact the outcome of voice
capture, potentially leading to a denial of service. Despite being user-friendly, they are
more susceptible to spoofing attacks than facial recognition systems [43], so they must be
combined with other authenticators to enhance security.

Facial Recognition

This camera-based technique compares a user’s image with the database but requires
good lighting and is not suitable for low-cost wearable devices [32]. Factors like glasses,
facial expressions, age, poses, and lighting influence results [41].

2.2.2. Behavior-Based Authentication

These models use machine learning (ML) to authenticate users by learning their
previous access patterns. This authentication mechanism is beneficial for tracking user
behavior over a specific period [43] but requires time to observe, and algorithm design
is complex. Older individuals’ use of behavior is difficult to capture due to their limited
activities. Examples of authentication mechanisms are explained below.

Gait-Based Authentication

Modern mobile devices can effectively capture gait patterns for authentication [44],
but older adults face more challenges due to walking challenges [1].

Heart Rate Biometric Identification

Heart rate signals are unique and consistent over time [45], and while smartphones
with integrated sensors offer heart rate biometric authentication, research on its use in
elderly individuals is still limited.

2.3. Smartphones and Wearables

Wearables have gained popularity for their use in health monitoring and authenti-
cation. However, most health-related signal proposals are based on high-end medical
equipment datasets that may not accurately represent widely available devices. Smart-
phones and tablets are popular portable devices in the IoT [46], although they are not always
considered essential components. They have the expected capabilities of the traditional IoT,
and they interact with IoT devices.
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2.4. Adaptive Authentication

Adaptive security is a self-monitoring security method that prevents network attacks
by altering its behavior and controlling the conditions under observation [34] reducing
the monotonous selection of the same authentication factors and identifying risks more
effectively than the one-size-fits-all approach [47].

Risk-Based Authentication

This is an adaptive authentication method that calculates user activity risk using
contextual and historical data, calculating the risk score in real time using specific rules [48].
There has been a lot of research on adaptive authentication, but not much of it has produced
real-world, workable solutions [49].

2.5. Authentication and Authorization Attacks in the IoMT

Because health data are sensitive and IoT device environments are resource-constrained,
authentication and authorization attacks in the Internet of Medical Things (IoMT) present
serious security risks, particularly in smart-home applications [50–52]. Although security
protocol developments are encouraging, continuous research and adaptation to new threats
are necessary due to the dynamic nature of the IoMT. As a result, numerous strategies
continue to be explored to mitigate these risks. IoMT devices are vulnerable to denial-of-
service and man-in-the-middle attacks, which could jeopardize patient data and device
functionality [53]. Physically Unclonable Functions (PUFs) are one type of authentication
mechanism that can be cloned by ML-based modeling attacks, granting unauthorized
access [54], but by incorporating ML techniques into authentication and authorization pro-
cedures, the unique challenges presented by IoMT networks can be addressed and attack
resistance can be increased [55]. Biometric Authenticated Key Exchange (BAKE), one of the
lightweight cryptographic protocols, improves security by offering mutual authentication
and protecting against phishing attacks [56]. At the same time, IEEE 802.1X and 802.11X
are playing a significant role in improving wireless network security by providing strong
authentication and access control mechanisms. The 802.1x standard addresses vulnera-
bilities in earlier standards by implementing a centralized authentication server, which
helps mitigate denial-of-service attacks. On the other hand, 802.11x introduces two-way
authentication to prevent man-in-the-middle attacks, significantly improving the security
posture of wireless Local Area Networks (LANs) [57]. Research is still ongoing to improve
these standards, which are incorporated at the hardware level in our proposed work.

3. Related Work
3.1. IoMT Authentication

The authors of [19] proposed a secure Lightweight Authentication Scheme (LAS) for
IoMT-based healthcare systems, enhancing security in healthcare systems. The proposed
system required device registration and central authority approval but allowed peer-to-peer
communication without central intervention during authentication and communication
phases while outperforming other lightweight schemes. However, only the technical part
of the scheme was evaluated. A graphical-password-based user authentication scheme for
the IoMT to improve security and user experience during the COVID-19 pandemic was
proposed in [58]. The proposed scheme, implemented via an Android application, was as-
sessed for system, information, and interface quality using the Post-Study System Usability
Questionnaire (PSSUQ) tool, demonstrating its potential to enhance user authentication
experiences in healthcare. Similarly, some authors [21] proposed an improved lightweight
user authentication scheme for the Internet of Medical Things (IoMT) in which the hash
function and XOR operation were used for operation in low-spec healthcare IoT sensors.
The proposed scheme outperformed other protocols in terms of security and performance
but did not deal with smartphone sensors. The protection of patient information’s confi-
dentiality in IoT gadgets was proposed in [22], which used decentralized identifiers (DIDs)
and verifiable credentials (VCs) together with OAuth-based authorization framework.
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The proposed framework demonstrated enhanced privacy and security through a smart
pill dispenser, thereby streamlining access control administration. The work, however,
mainly focused on the technical part of the model rather than the user part. A study [59]
proposed a multi-factor authentication system for IoT-based Wireless Medical Sensor Net-
works, enhancing security, scalability, and effectiveness in patient care. The proposed
system, while offering enhanced functionality and resistance to common attacks, did not
include smartphones. The use of Artificial Intelligence (AI) to enhance authentication
of IoMT users through the design of a framework using bioelectrical signals for authen-
tication and AI with contextual data was proposed in [23]. The framework enhanced
security in healthcare, maintained user trust and data integrity, balanced usability and
security, and was adaptable to various devices. Their work, however, was only restricted to
bioelectrical signals.

Most works on the IoMT involving the elderly looks at applications that monitor
their health and maintain their well-being without looking at authentication. We now
look at other works in the realm of the IoMT that do not necessarily look at the elderly’s
authentication.

Authors [20] suggested an assessment framework to offer trustworthy and safe au-
thentication procedures based on authentication features for Internet of Health Things
(IoHT) devices. Using a hybrid multi-criteria decision-making methodology, the framework
assessed authentication aspects and determined which authentication scheme or method
was best. The work, though adaptive, did not consider elderly users. A biometric-based
authentication scheme for hospital environments where patients interacted with smart
surroundings without explicit gadgets was proposed in [60]. The scheme could resist
various well-known attacks showing that biometric keys were crucial for identification
and authentication, but the work generalized security and did not focus on the elderly.
A novel, low-complexity, and resilient remote user authentication system for Internet of
Things-enabled healthcare applications was presented in [61]. A formal verification proved
the security of the scheme and its applicability in real-world healthcare applications. On the
other hand, the exploration of authentication techniques for IoT-enabled healthcare systems
at different network levels and a taxonomy of attacks was conducted in [62]. Their work
focused on user and device verification but did not focus on elderly users. Table 1 below
shows a comparison of our proposed work with previous works highlighting the gaps that
our work sought to close.

Table 1. Our proposed work against previous work.

Item Previous Work Our Proposed Work

Usable security Previous works focused on security without usability and vice
versa [20–22]

Our proposed Android app
aims to balance usability and
security.

Device authentication Most previous research focused on device authentication [19,21].

Our work aims to authenticate
both the user and device on
medical platforms for security
and usability.



J. Cybersecur. Priv. 2024, 4 999

Table 1. Cont.

Item Previous Work Our Proposed Work

Continuous
authentication

A model based on app traffic patterns continuously authenticates
users by analyzing network traffic, achieving an impressive average
F-measure of 95.5% was developed [25], one that utilized
touch-timing differences and hand-movement gestures [26],
hands-free one-time and continuous authentication using glass
wearable devices [27], hands-free authentication using glass wearable
devices that enabled one-time access through voice commands and
maintained continuous authentication by periodically displaying QR
codes for re-authentication while the user faced the terminal [27],
continuous authentication scheme using human-induced electric
potential measured by wearables [28], combining trusted IoT devices
and continuous authentication based on smart-home behavior [63],
hands-free continuous authentication using ECG and EMG
biometrics that required no human interaction [29], continuous
authentication (CA) using cardiac biometrics from wrist-worn
wearables [30], a single-factor authentication scheme that required
only two short voice inputs [31].

Previous techniques either
required additional hardware or
movement of the elderly people
thereby inconveniencing them.
We aim to use static
authentication for improved
usability amongst elderly users.

Adaptive
authentication Current authentication techniques impose what users must use [64].

We aim to enable adaptive user
authentication by assigning
available and suitable
authenticators based on a risk
score and the user profile.

User consideration Most previous IoMT works do not consider the age of users. We factor in the user’s age,
health, and risk score.

App availability Most commercial apps mainly monitor health [65,66].

We aim to use users’
physiological features for health
monitoring and authentication
on medical platforms.

Risk score analysis
With user behavior and environmental data, a risk score was
calculated via localized risk analytics to help the authentication
server make decisions in [67–69].

Our work is narrowed down to
risk scoring for IoMT
authentication.

3.2. Adaptive Authentication

Bayesian probability in Context-Aware Scalable Authentication (CASA) was proposed
in [70], which selected active authentication methods based on passive factors and loca-
tion contexts to lock the screen based on PIN and password. The model, while reducing
usability, formed the foundation for modern adaptive authentication. The authors of [71]
introduced Choose Your Own Authenticator (CYOA), allowing users to choose their authen-
tication scheme based on their inclinations, capabilities, and usage context, but restricting
flexibility and introducing delays, especially for elderly users. A proposed smartphone
adaptation that adjusted lock functionality between vocal sound recognition, facial scan,
and fingerprint-based on usability was proposed in [72] but it disregarded security due to
its focus on usability. In conclusion, there is no universally applicable solution for IoMT
security, and thus the various authentication mechanisms can be used in conjunction to
improve security at the elderly users’ convenience [73].

4. Research Method

The proposed adaptive authentication model analyzes user interaction with an An-
droid application to create a risk profile using the Naive Bayes Model. The choice of
the model was predicated upon its simplicity, speed, interpretability, usefulness in our
context, and efficiency [74–77]. An Android app was developed, through which users
first registered and then tried to log in to an imaginary platform. During authentication,
an assessment of the context was executed to estimate the risk associated with the login
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request. The outcome was then categorized as a Propensity Score, which determined the
level of authentication difficulty and the authenticators to be used. The goal was to create
an authentication solution that was tailored to the user’s visual, mental, and physical
medical condition providing a user-friendly authentication experience while ensuring the
security of their medical information. The steps followed the MAPE-KHMT framework.

4.1. Naive Bayes Machine Learning Algorithm

This supervised machine learning algorithm employs probabilistic and statistical
methods for classification. The derivation of the Naive Bayes probability from the simple
Bayes Theorem is written as follows:

P(Y | X) =
P(X |Y) · P(Y)

P(X)
, (1)

where X = (x1,x2,. . . ,xn) represent the user’s context. Expanding using the chain rule gives

P(y | x1, ...xn) =
P(x1 | y) · P(x2 | y)...P(xn | y)

P(x1)P(x2)...P(xn)
, (2)

which simplifies to

P(y|x1, . . . , xn) ∝ P(y)
n

∏
i=1

P(xi|y), (3)

Let P(y | x1,. . . ,xn) be represented by P(u) for simplicity purposes. The verification
stage compares the user’s illegitimacy probability P(u) to a predefined threshold α(0, 1),
if it is 1, access is denied, otherwise, multiple classes are used. The following formula is
used to calculate the categorization decision rule:

P(u) =

{
Legitimate, if P(u) ≤ 0.2
Suspicious, if P(u) > 0.2,

(4)

Contextualizing Equation (2) to our case gives Equation (5):

P(Ill | MobChnge, . . . TimeChnge) =
P(MobChnge | Ill) · P(GPSChnge | Ill) . . . P(TimeChnge | Ill)

P(MobChnge)P(GPSChnge) . . . P(TimeChnge)
, (5)

where Ill represents Illegal, MobChnge represents Mobile OS Change, TimeChnge represents
Time Change and GPSChnge represents GPS Change.

4.1.1. Proposed System Overview

We utilized Android smartphones with Android version 12 or higher, equipped with
sensors for context identification and authentication. The research focused on the operat-
ing system rather than specific brands to cater to different users who used their devices
since the research used the Bring Your Own Device (BYOD) concept. After data collection,
data analysis was conducted using R Studio. The smartphone worked as a lightweight
information processor, sensing and actuating, and sending data to the cloud for further
processing and storage. The research introduced a new feature, human–machine collab-
oration, which was integrated into the framework’s monitoring, analysis, and execution.
This work introduced novel aspects that included assigning authenticators based on risk,
user medical conditions, available authenticators, and testing outside the lab environment.
The Naive Bayes algorithm described in the previous section was used to calculate the risk
associated with a login attempt. A user was defined using contextual features included in
the algorithm below, namely, mobile browser, mobile operating system, IP address, network
type, GPS coordinates, and access time. These features were used in the Naive Bayes chain
rule to calculate the conditional probability of a login attempt being illegal based on the
number of mismatches with known features. Having determined the risk score, the user’s
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age and medical condition were used, guided by the analysis of authenticators conducted
in Section 2 to determine which authenticators available on a particular device could be
used to authenticate an elderly user. Algorithm 1 shows the steps that a user follows from
the time of clicking the login button to the time of authorization.

Algorithm1. Adaptive authentication and authorization for elderly users
Input: Mobile_Browser, Mobile_OS, IPAddress, Network_Type,

GPS_Coordinates, Access_Time, Knowledge_based data,
Biometric_data, Age.

Output: Risk score, trust score, and authentication result.
Assumption: The usability of authenticators is significantly influenced by age

and medical condition.

1. Start adaptive app by clicking an icon.
2. Obtain user verification information:

• User—begin signup if no account exists, or login if already registered.

• User—during signup, select medical condition(s) for the app to determine the
usable authenticators for the user.

• App—verifies user email address/phone number and password or PIN.

3. Define partial conditional probabilities as weights using the Naive Bayes Theorem:

• App—use Naive Bayes to define conditional probabilities of deviation of input.

• App—capture all background and active data that define a user.

4. Calculate first-level weighted risk score:

• App—obtain email/username and device parameters.

If the account is verified on the device, request an adaptive authentication PIN or pass-
word
else
Call other available and usable verification methods.

5. Calculate second-level weighted risk score:

• Verify user against the device.

If the user and device match, call one usable authenticator and update the trust score
else
Call other available and usable authenticators.

6. Iterate through user profiles:
Begin: while trust score < threshold

• Repeatedly continue through each user profile, calculating the risk score, and ini-
tial trust score.

• Authenticate with available and usable authenticators, one at a time.

• Update trust score at each iteration:
trust score += trust score
End

7. Display Results:

• Show each user’s risk score, trust score, and whether authenticated or not.

8. Authorize:

• Grant access to requested resources.

The following is a summary of the algorithm: With the help of enumerators, users
downloaded, installed, and registered on the adaptive app on their smartphones. Through
the use of device sensors, the application gathered information in the background about
the user, the device, the network, the location, the access time, and other details required
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to create a preliminary user profile. To ascertain the risk involved with that login attempt,
the application then computed the risk score. One could log in with the same or different
contextual data on the same or different days. Depending on how the user deviated
from the known profile, the users went through a series of phases of authentication at
varying degrees until they received an acceptable trust score, at which point they would
be authorized. The user would not be permitted access if the trust score was not obtained.
Device-level data collection resulted in the transmission of that information to the server,
where it was stored and later accessed for analysis. After that, it was subjected to ML
algorithms to extract data regarding the model’s efficiency, usability, and security. Users
were then asked to rate the app’s usability in a post-deployment evaluation, and the data
were evaluated in R Studio. Figure 2 shows the general architecture of the proposed system.

Figure 2. General Architecture.

To connect with the server for risk assessment, authenticator selection, and ultimately
authorization, the smartphone served as both a sensing and an authenticating device.
Through Bluetooth, the smartwatch could optionally provide additional sensing connection
with the smartphone. Since there was no specific app or resource to access for our work, we
used Figure 3c’s panel to represent the authorization stage. It offered the option to search
for Bluetooth devices for behavioral authentication following initial authorization. Figure 4
shows the signup and login screens.

Figure 3. Login process until authorization.
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When a user uses the app for the first time, signup is initiated. Then, login followed.
Figure 3 shows cases of failed login where (a) is a scenario of an unregistered user being
unrecognized and (b) a registered user failing the initial knowledge-based authentication
before the biometric fingerprint is called, which is again failed before a failure message is
displayed signaling the end of the session. Part (c) shows the successful authentication
screen where the system starts searching for nearby Bluetooth devices that can also be used
for authentication.

The same process described above occurs if there are changes in any other contextual
factors which result in a change in risk score.

Figure 4. Signup and login screens.

Pre-Study Survey

To help with prototype development, a previous study [17] examined user demo-
graphics, ICT backgrounds, disabilities, security knowledge, and preferred authentication
methods. In order to find age-related changes in the aforementioned parameters, the study
used participants who had completed a pre-study survey and were above the age of eigh-
teen (18). Because of the different results and participant changes, there was no comparison
with the initial survey during the information gathering stage.

Study Setup

Participants were interviewed using smartphones at workplaces, hospitals, or homes,
starting with the enrollment phase where they registered, provided information, and cre-
ated models. The usability of their smartphones was assumed to be enhanced due to their
familiarity with them.

Tasks

Instead of visiting the actual site, participants were told to pretend they were logging
into their health portal, primarily for authentication.
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4.2. Participants
4.2.1. Population

Patients over the age of fifty (50) were the focus of this study, with the assumption
that they were not active and were not tech-savvy, suggesting the necessity for static
authentication.

4.2.2. Sample Size

Fifty-three (53) participants comprising twenty-five (25) men and twenty-eight (28)
women participated in the research. Seven (7) participants did not respond, giving an 88%
response rate.

4.2.3. Dataset Size

The preceding section’s sample yielded a dataset including two-hundred and thirty-
six (236) records, with an average of four records per user indicating distinct login attempts.
The user-identifiable details, contextual elements, and variations in risk score up to the final
score indicating whether or not a user was permitted access were all labeled in the dataset.

4.2.4. Sampling Technique

The research utilized stratified systematic sampling to represent both rural and ur-
ban populations.

4.2.5. Inclusion and Exclusion Criteria

The study employed smartphone ownership as an inclusion criterion and examined
senior users, eliminating the upper-age limit, following the Belmont Report [78]. El-
derly people without smartphones and those under 50 were not allowed to participate in
the survey.

4.3. Data Collection

The data were collected through the app’s registration form and user logins, with an
average of four trials per participant.

5. Results

Following their contact, the adaptive authentication app gathered information on
users’ backgrounds, health issues, risk assessments, and authentication status. For each
component of the adaptive authentication model, confusion matrices were among the
metrics used in the analysis. The study focused on successful or failed authentication and
used R Studio to analyze the data to find trends in the ease or difficulty of authentication
among older participants using our proposed model. Since different devices were using
the same operating system, performance tests at the device level were not carried out.

5.1. Confusion Matrix and Statistics for Overall Authorization

The confusion matrix and statistics for the whole authentication to authorization pro-
cess are displayed in Figure 5 where the confusion matrix, the Kappa Score, and Mcnemar’s
test are shown in order.

As can be seen, the model accurately classified every instance in the dataset, with a
95% confidence interval indicating a 100% accuracy. The model’s low p-value suggested
superior performance compared to the baseline, with a true accuracy of at least 98.44%.
The No Information Rate indicated that an estimate about the most prevalent class could be
accurate 51.06% of the time. When taken as a whole, these metrics offered strong proof that
the model performed extremely well on the given data, correctly classifying each event with
no mistakes. Other metrics used included balanced accuracy, prevalence, detection rate,
positive predictive value (PPV), negative predictive value (NPV), specificity, and sensitivity.
The specificity and sensitivity were both one, indicating that the model correctly detected
true negatives and positives. Similar functionality in both groups was indicated by the
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dataset’s balanced accuracy of one, with equal prevalence, detection rate, and detection
prevalence matching the real class distribution. Verifying the model’s performance using
untested test data is essential to ensure that it generalizes well and does not overfit the
training set.

Figure 5. Overall confusion matrix and statistics.

Our model, which had an Area Under the ROC Curve (AUC) value of one, showed
excellent discrimination ability between the positive and negative classes. For randomly
chosen positive and negative instances, the model consistently gave positive occurrences a
higher score than negative instances. Figure 6 shows the ROC curve for authentication and
authorization with the Area Under the Curve (AUC) of one with control = 0 and cases = 1.

Figure 6. ROC curve for authentication and authorization.

The results of combining the AUC with additional performance indicators derived
from Figure 1 are shown in Table 2.

Table 2. Combination of AUC with other performance metrics.

Metric Value

Accuracy 1
Sensitivity (recall) 1
Specificity 1
Precision (PPV) 1
NPV 1
Balanced accuracy 1

The adaptive authentication model, with no false positives or negatives, accurately rec-
ognized all positive and negative classifications, predicting data distributions. The model
accurately predicted the dataset’s class distributions and consistently ranked positive exam-
ples higher than negative ones, demonstrating a flawless AUC. However, since these results
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may indicate overfitting, we further performed cross-validation. Since perfect performance
is uncommon, overfitting is the only explanation for these findings. Normalization and
more thorough testing with a wider variety of datasets (real-world data) are needed to
make sure the model performs well outside of a controlled environment. However, since
there are not many studies that directly connect to our work, real-world deployment was
carried out to acquire a dataset, which was evaluated. The results of the calculations for
the False Positive Rate (FPR) and False Negative Rate (FNR) were zero for each. The FPR
and FNR values of zero for the provided dataset supported the accuracy and reliability of
the model.

5.2. Usability Evaluation

False acceptance and rejection rates were employed to gauge the model’s usability.
Table 3 shows the evaluation metrics also derived from Figure 1.

Table 3. Combination of AUC with other performance metrics.

Metric Value

False Rejection Rate 0
False Acceptance Rate 0

The authentication paradigm exhibited high security and usability, with zero false
acceptance and rejection rates, demonstrating its exceptional performance. The model’s
authentication decisions were accurate and consistent, ensuring users’ authenticated state
was accurately matched.

5.3. User Health Impact on Authentication

Our assessment of the effect of user health on authentication was aided by post-
deployment evaluation, as the majority of users reported that the app considered their
health. This had an impact on the selection of authenticators, as previously assumed. Our
model accurately predicted 80% of the cases, with an overall accuracy of 80% as evidenced
by its high recall and precision. The model’s high specificity suggested that it could
recognize class 1 (negative cases) instances with accuracy. Figure 7 shows the confusion
matrix and statistics for health impact on authentication where (a) is the confusion matrix,
(b) shows the Kappa test, and (c) shows Mcnemar’s test.

Figure 7. Confusion matrix and statistics for health impact on authentication.

A further analysis and investigation may be necessary to identify the most significant
predictor features and their impact on model performance. Cross-validation is also required
to validate the model on independent datasets.

5.4. Train–Test Split and Cross-Validation

The model underwent further validation through train–test split and cross-validation,
utilizing the confusion matrix and statistics results as shown in the tables.
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Train–Test Split

Figure 8 shows the confusion matrix and statistics for the train–test split option and
the L1, L2, and Elastic Net normalization where (a) is the confusion matrix, (b) is the Kappa
test, and (c) is Mcnemar’s test.

Figure 8. Confusion matrix and statistics for the train–test split and L1, L2 normalization.

The model successfully predicted every occurrence in the test set with excellent sensi-
tivity and specificity, identifying both positive and negative events. The initial results were
confirmed by the Kappa, precision, and negative predictive values, which showed that all
forecasts for each class were accurate. The model effectively generalized to the test data,
as indicated by the findings. With an accuracy of 98.59%, excellent sensitivity, specificity,
and balanced accuracy, the model was operating remarkably well under the Lasso and
Elastic Net normalization. The one misclassification was a minor and normal problem,
but the model predicted outcomes quite well.

5.5. Cross Validation

To examine access performance metrics and the confusion matrix, the Random For-
est classifier was employed for 10-fold cross-validation using 235 samples, 26 predictors,
and two classes, “0” and “1”. The greatest number was utilized to determine the best
model using accuracy, and mtry = 133 was the final value employed for the model. For an
accurate representation of each class and to increase the model’s generalizability, a 10-fold
cross-validation method with gender-based stratification was employed. To ensure repro-
ducibility, a random seed was used and it was observed that accuracy and Kappa both
considerably rose when mtry rose from 2 to 133 and finally 265, suggesting that for the
particular dataset and model, choosing more variables at each split improved performance.
Figure 9 shows the performance metrics.

In both train–test split and cross-validation results, the model demonstrated excellent
accuracy and Kappa, demonstrating its effective generalization to unknown data.
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Figure 9. Confusion matrix and statistics for the cross-validation option.

5.6. Distance Analysis

We performed a distance analysis to determine the effect of location on authenti-
cation. The study underscored the importance of location by calculating the distance a
user, presumed to be constantly carrying their smartphone, would have traveled from a
predetermined spot. This is shown in Figure 10.

Figure 10. Distance analysis

The linear regression analysis revealed a significant negative correlation between
Dist from epicenter and authorized. The likelihood of obtaining authorization decreased as
the distance from the epicenter increased. The relationship was statistically significant
due to the significant variability in the authorized variable. Figure 11 shows a graphical
illustration of the distance analysis where trust ranking decreased with distance from a
known location.

Figure 11. Distance graph.

According to the results, our model could tolerate a certain radius from a known site,
but when the radius was above a certain threshold, it caused suspicion, and it was clear
that our model was user-friendly, especially for older users.
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5.6.1. Effectiveness

The model’s effectiveness in predicting user access was assessed using a confusion
matrix and related metrics. The success ratio was measured to ensure the model’s reliability
and usability in real-world scenarios. Figure 12 shows part of the success-ratio results
derived from the total login attempts and the successful attempts.

Figure 12. Snippet of success ratio.

The snapshot shows a success ratio between 0.4 and 0.8, with successful logins gener-
ally exceeding failed logins.

5.6.2. Efficiency

The efficiency of our model was assessed through the FRR and FAR measurements,
both of which had zero values indicating efficient classification. The study analyzed various
factors such as trust ranking, success rate, completion rate, average success ratio, overall
completion rate, and average success ratio. The overall values are shown in Table 4.

Table 4. Overall success and completion ratios.

Metric Value

Average success ratio 0.47
Overall success rate 0.49

Although the ratios were acceptable, they were not high, which showed that our
model’s efficiency needed to be raised. Other mechanisms that could be used to measure
it include resource efficiency, risk vs. trust balance, model interpretability, scalability,
performance, and the security–usability trade-off, cross-validation, and accuracy-related
metrics that we utilized.

5.7. Usability Considerations

We used a post-deployment survey to ask users about their experiences with the
app. We used the age category of fifty-one (51) years and older. Most respondents who
were asked if the app considered their medical conditions indicated that it did, as seen in
Figure 13.

Most respondents concurred that the app took into account their medical issues.
Regarding further usability measures, the responses were compiled as depicted in Figure 14.

It is clear that most reviews were favorable to the app. On the frequency of issues with
the app, users gave responses in Table 5 below.

As evident, 66% of the respondents responded positively in support of the app.
Figure 15 summarizes user responses to a question about whether they would recommend
the app to others.
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Figure 13. App consideration of user medical conditions.

Figure 14. Usability metrics.

Table 5. Frequency of errors.

Issue Occurrence Number of Users

Never 14
Rarely 21
Sometimes 14
Often 4

Figure 15. App recommendation to others.
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6. Discussion

We implemented an adaptive user authentication model for IoMT users with a par-
ticular focus on improving usable security. The model, which was implemented on An-
droid smartphones, demonstrated promising results in terms of accuracy, precision, recall,
and overall performance. The model calculates the initial risk score by utilizing various
features like user ID, device ID, network, location, and habits and performed stepwise
authentication guided by the hardware of the device. The model demonstrated high accu-
racy in identifying authorized and unauthorized access attempts during cross-validation,
indicating effective risk calculation. These ideal outcomes, however, could not always be
practical and might point to possible problems like overfitting, particularly given that the
evaluation was mostly focused on training data rather than a distinct test set. To ensure
the model maintained its excellent performance in real-world scenarios, it was crucial to
determine consistency in its performance on unobserved test data. The Kappa value of
one indicated a perfect agreement between the model’s predictions and the actual values
after adjusting for chance. The risk calculation mechanism accurately detected anomalies
between legitimate and fraudulent access attempts, with a 1.0 sensitivity and specificity,
ensuring no false positives or negatives. Combining the AUC with additional performance
indicators showed that our model accurately recognized all positive and negative classi-
fications, predicting data distributions. The results suggested that there may have been
overfitting, which may necessitate cross-validation. Nevertheless, our accuracy of 98.5%
after applying Lasso and Elastic Net normalization provided us with confidence that our
model was resistant to overfitting. The authentication paradigm, which had zero false
acceptance and rejection rates, exhibited high security and usability. Although these results
are ideal, the model’s performance in real-world scenarios and against different user types
is crucial for ensuring its robustness and generalizability.

The health impact accuracy rate was 80%, indicating accurate detection of positive
situations with high recall and precision. We can infer that physical health conditions have
an impact on the success of authenticators like a fingerprint or gait, while mental health
conditions affect the success of knowledge-based authenticators that are recall-based, based
on our analysis of authenticators and their suitability for elderly users. As a result, we used
rule-based selection to allocate authenticators related to health conditions. Nevertheless,
the impact of each health condition on the outcome of authentication was not examined
in this experiment. Therefore, to strengthen our user authentication model, it is crucial to
discover any particular risk factors associated with health issues that are correlated with
lower trust ratings or greater failure rates. To ensure equitable treatment for older users
with specific medical conditions and appropriate authentication mechanisms, the model
was further tested for usability taking health conditions and distance from known locations
into consideration. However, this is only applicable to specific smartphone’s hardware.

A further analysis and investigation may be necessary to identify the most significant
predictor features and their impact on model performance. When evaluating using the train–
test split, the model’s Kappa, precision, and NPV showed accurate forecasts for each class,
indicating good generalization to test data. The study found a mix of high- and low-trust
users, with a median trust value of 0.5, influenced by contextual factors. Health conditions,
age, and location data in that case were significant predictors of trust score. In line with the
logic of the model, which holds that a greater distance diminishes confidence, authorization
was significantly negatively impacted by distance from the known location. To enhance
the validity of the study, it is recommended to incorporate more predictors and examine
multicollinearity and non-linear relationships. The confusion matrix demonstrated a 100%
accuracy in training; nevertheless, the final authorization decision based on trust score
and risk assessment might be improved, as indicated by the 80% cross-validation findings.
The high Kappa value indicated a strong agreement between the predicted and actual
classes. Average and overall success ratios validated [32], who asserted that age and illness
had a bearing on user authentication success amongst the elderly. Although our method
employed risk scores to ascertain authentication challenges, each user’s experience with the
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process would vary based on factors such as the availability of usable authenticators on their
particular device. This is a result of the model’s lack of device specificity and its base in the
Android operating system, which works on a range of hardware. Risk-based authentication
(RBA) allows our model to successfully comply with data privacy regulations such as
GDPR and HIPAA since it protects user data and minimizes unnecessary data exposure.
This model makes use of several authenticators and enhances security while abiding by
privacy rules by modifying authentication requirements based on risk assessments. It
guarantees that all risk assessments and outcomes are carried out, kept secret from the
user, and that backend privacy is upheld. Additionally, using several authenticators makes
the system more secure against attacks because an attacker may have to compromise
multiple authenticators, increasing the likelihood that they will be discovered. According
to Figure 13, which displays the metrics used to measure usability, users were generally
satisfied with the app across all evaluated aspects. Overall performance, quality of service,
and ease of use all pointed to most users finding the app to be mostly satisfactory. User
views varied significantly when it came to hardware compatibility and overall reliability,
which suggests that those aspects need to be improved to enhance the entire experience.
Look and feel further revealed that some users were not at all happy with the way the app
looked and felt, while others thought the design and interface were great. These findings
typically point to the need for improvements to make the app more aesthetically pleasing
and easier to use to boost user satisfaction.

7. Conclusions and Future Work

The model exhibited exceptional performance in calculating risk, trust, and autho-
rization decisions. The system effectively integrated user behavior, environmental context,
and health conditions to provide adaptive and secure user authentication. However,
the model’s accuracy difference between training and cross-validation indicated the need
for further testing and tuning on diverse data to ensure its generalizability across various
scenarios. Low success ratios may also be attributed to several factors like user experience,
network, and medical conditions, and to capture more complex user behaviors and envi-
ronmental changes, future work will require diversifying the training data to cover a wider
range of user behaviors and situations. We could use contextual factors such as ambient
light, social context, and network speed to estimate the risk of a login attempt. Network
quality could be used to identify patterns, proximity to known devices (like Bluetooth),
daily habits, and user activity and could be used to identify a particular person when
analyzed over time. Contextual elements such as ambient light and the context of device
usage could also be utilized to assess the risk of a login attempt. This would also involve
exploring additional features and testing performance at the device level. Additionally, it is
important to keep track of the users’ health status and modify authentication procedures
as needed to accommodate any changes. To ensure optimal performance, we will also
frequently adjust the model’s parameters and validate them using fresh data. To effectively
address the overfitting issue, other normalization approaches might need to be considered
in addition to the cross-validation and real-world data use that Lasso and Elastic Net
suggested in this work.

Given that 80% of the participants were senior users in Sub-Saharan Africa (SSA),
whose socioeconomic circumstances may differ from those of other continents, some degree
of geographic and demographic generalization may be limited. This is due to poten-
tial variations in financial status, amount of technological expertise, perceived usability,
and overall security awareness. Nonetheless, it is possible that the findings, independent
of geography or upbringing, can be applied to other demographic groups. On health
conditions, future work needs to investigate if some health conditions have more effects
on authentication outcomes than others. Additionally, longitudinal studies need to be
conducted in the future to monitor user behavior, and health changes over time would
provide deeper insights into improving model accuracy. Regarding scalability, we believe
our model can only perform very well with small datasets like the one that we used in
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our experiment as it has few features, but we believe that since we used the algorithm for
risk calculation and not the classification tasks, we can expand it by adding more features
to the risk calculation engine without significant performance costs. However, as other
authors have noted [74,75], the Naive Bayes algorithm performs best on small datasets but
not datasets that require intricate feature interactions on classification tasks. Because of its
computational efficiency, Naive Bayes can still perform well on simple datasets that only
grow in size while the non-existence of large datasets in our specific scenario prevented us
from testing its effectiveness on a sizable dataset. If the dataset becomes more complex and
has more feature interactions, Random Forest or Gradient Boosting are likely to perform
better predictively, though they will demand more computational power. The model can
be scaled for real-world deployment, especially in a healthcare setting with thousands of
users; however, given that end-user devices are mobile, attention should be kept on the
computational resources needed for such scalability so that the technology cost remains
low. On usability, future work needs to look at areas that need improvement, which include
hardware compatibility, look and feel, as well as overall reliability.
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