Please use this identifier to cite or link to this item: https://repository.rsif-paset.org/xmlui/handle/123456789/194
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAlfredy, Tusekile-
dc.contributor.authorElisadiki, Joyce-
dc.contributor.authorAbeid Chande Jande, Yusufu-
dc.date.accessioned2023-02-09T08:06:21Z-
dc.date.available2023-02-09T08:06:21Z-
dc.date.issued2021-10-08-
dc.identifier.urihttps://repository.rsif-paset.org/xmlui/handle/123456789/194-
dc.descriptionJournal Articleen_US
dc.description.abstractIn comparison to other conventional methods like adsorption and reverse osmosis (RO), capacitive deionization (CDI) has only been investigated extensively for the removal of inorganic pollutants from water, demonstrating limited practicality. Herein, the study investigated the use of CDI for the removal of paraquat (PQ) herbicide from water by using commercial activated carbon (AC) electrodes. The CDI performance was examined as a function of the initial PQ concentration, applied voltage, flowrate, treatment time, and cycle stability testing in the batch mode approach. The applied voltage had a beneficial effect on the removal efficiency, whereas the removal efficiency of PQ declined as the initial PQ concentration increased. However, the electrosorption capacity gradually increased with the increase of initial feed solutions’ concentration. The maximum removal efficiency and electrosorption capacity achieved at 5 mg/L and 20 mg/L PQ initial concentrations, an applied voltage of 1.2 V, and 5 mL/min flowrate were 100% and 0.33 mg/g and 52.5% and 0.7 mg/g, respectively. Washing the electrodes with distilled water achieved sequential desorption of PQ, and the process produces a waste stream that can be disposed of or treated further. Therefore, the CDI method is considered a promising and efficient method for removing organic pollutants from water including pesticides.en_US
dc.publisherAdsorption Science & Technologyen_US
dc.subjectCapacitive Deionization, Paraquat Herbicide, Aqueous Solutionen_US
dc.titleCapacitive deionization for the removal of paraquat herbicide from aqueous solutionen_US
dc.typeArticleen_US
Appears in Collections:Minerals, Mining and Materials Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.