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Abstract: Ground vibration induced by rock blasting is an unavoidable effect that may generate severe
damages to structures and living communities. Peak particle velocity (PPV) is the key predictor for
ground vibration. This study aims to develop a model to predict PPV in opencast mines. Two machine-
learning techniques, including multivariate adaptive regression splines (MARS) and classification
and regression tree (CART), which are easy to implement by field engineers, were investigated. The
models were developed using a record of 1001 real blast-induced ground vibrations, with ten (10)
corresponding blasting parameters from 34 opencast mines/quarries from India and Benin. The
suitability of one technique over the other was tested by comparing the outcomes with the support
vector regression (SVR) algorithm, multiple linear regression, and different empirical predictors using
a Taylor diagram. The results showed that the MARS model outperformed other models in this study
with lower error (RMSE = 0.227) and R2 of 0.951, followed by SVR (R2 = 0.87), CART (R2 = 0.74) and
empirical predictors. Based on the large-scale cases and input variables involved, the developed
models should lead to better representative models of high generalization ability. The proposed
MARS model can easily be implemented by field engineers for the prediction of blasting vibration
with reasonable accuracy.

Keywords: mining; blasting; ground vibration; machine learning; multivariate adaptive regression
splines

1. Introduction

The assessment and prediction of ground vibration generated by blasting is one im-
portant challenge in mine management. Blast-induced ground vibration (BIGV) is an
unavoidable nuisance which, at a certain level, destroys the structural integrity of the sur-
rounding structure in the mine area and affects far-field edifices. This results in complaints
from the affected dwelling residents and mine closure with collateral consequences such as
job losses and stalled socio-economic development. Sometimes, high-intensity BIGV can
destroy groundwater tables, existing network conduits and the ecology of surrounding
living communities (fauna and flora). Studies suggested that BIGV influences vegetation
development and could contribute to deforestation in the near future [1]. The vibration
induced by blasting usually leads to ground/slope instability, endangering the safety of
workers during loading and subsequent drilling and blasting operations.

Although a lot of advancement has been witnessed over the decades in blasting
technology, the undesirable effects of BIGV cannot be completely eradicated. However, it
can be predicted and controlled to meet standard levels for damage minimization. Peak
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particle velocity (PPV) induced by blasting is one of the best vibration indices that can
effectively represent BIGV and potential damage to nearby structures [2]. The measurement
of PPV using a seismograph is the only direct route, and is indubitably the most accurate
measurement technique to assess the intensity of BIGV [3]. However, the method is
expensive and time-consuming, and cannot predict PPV and prevent potential damages
induced by blasting. Therefore, several scholars have developed indirect methods involving
empirical formulas and machine-learning (ML) techniques to predict PPV [4]. The literature
has revealed that several factors influence blasting PPV [5]. However, predictive empirical
formulas involve only two parameters, namely maximum charge per delay and monitoring
distance, and do not consider the complex interaction between PPV values and other
blasting parameters, which undoubtedly leads to their low prediction capability [6]. The
ML techniques have significantly improved the accuracy of PPV prediction in recent
decades. ML techniques have the capability of solving complex engineering problems, and
can handle more than a few effective input variables.

Studies by some researchers have applied ML techniques to predict PPV and opti-
mize design parameters to reduce environmental, social, and economic impacts related to
blasting vibration. For example, Shirani and Masoud [7] employed trial-and-error experi-
mentation by combining gene-expression programming (GEP) and cuckoo optimization
algorithm (COA) in an iron mine and achieved a significant reduction in PPV values
(55.33%). Similarly, a combined method of principal component analysis (PCA) and sup-
port vector machine (SVM)-based PPV modeling was successfully used to optimize the
blasting pattern in Hongtoushan Copper Mine in Vietnam [8]. Likewise, Bayat et al. [9]
developed the artificial neural network (ANN) model optimized by the firefly algorithm
(FA) to improve blast-design parameters. The results of their study yielded a 60% reduction
in PPV which, in reality, could contribute to minimizing potential vibration impacts. Table 1
reports some studies employing ML techniques and empirical predictors in assessing PPV.

The review conducted by Dumakor-Dupey et al. [4] showed an excessive number of
ML techniques applied in predicting PPV, with the common algorithms being artificial
neural network (ANN), support vector machine (SVM), and the adaptive neuro-fuzzy
inference system (ANFIS). The accuracy of the models depends upon the algorithm and the
interaction between variables. Hybrid models have been recently introduced by combining
two or more ML algorithms to enhance the accuracy of stand-alone ML techniques. How-
ever, these hybrid models result in complex mathematical expressions that are difficult to
interpret and impracticable. These complex models are referred to as black-box techniques,
in contrast to white-box techniques [10,11]. White-box techniques can provide interactive
behavior between independent variables and the output. They are user-friendly and can
be easily implemented on-site to optimize blast designs and control PPV. Therefore, this
study aims to predict PPV based on two white-box ML techniques, such as classification
and regression tree (CART) and multivariate adaptive regression splines (MARS), barely
employed in previous studies (Table 1). In addition, different empirical methods, multiple
linear regressions, and the adopted SVM algorithm, namely support vector regression
(SVR), were also applied for comparison.

Although the literature shows that conventional white-box ML techniques can be easily
implementable by field engineers to predict blast-induced outcomes, there are limited
investigations applying CART and MARS to predict PPV. Monjezi et al. [12] reported
that the generalization ability of predictive models increases with the number of input
variables and datasets. Therefore, this study employed a record of 1001 sets of data from
34 different opencast mines to develop a single ML model. Each dataset involves ten
blasting parameters of a wide range, including hole diameter (HDM), hole depth (HD),
number of holes (NH), burden (B), spacing (S), stemming (T), charge per hole (CPH), total
charge (TC), maximum charge per delay, (MCPD), and monitoring distance (D). These
parameters are considered to be effective variables affecting blast-induced ground vibration
(PPV) [5]. To the best of the authors’ knowledge, there is no existing investigation involving
many datasets and input variables from various geo-environments to develop regression
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models for PPV prediction as employed in this study. Therefore, the investigation would
obtain better results in representative models that could be implemented in different geo-
environments for efficient prediction of PPV for safety and impact minimization. The
overall study method is presented in Figure 1.

Figure 1. Flowchart of the overall study method.

This paper is structured as follows: after the introduction, the data source and a brief
description of the different techniques employed to develop the models are presented in
Sections 2–4, followed by the discussion and the results. The conclusion is presented in
Section 5.

Table 1. Some studies of PPV prediction based on ML techniques.

Authors Models Input Parameters No. of
Datasets

Best
Model

Performance
Indices

Ke et al. [13] SVR, GEP, ANN-SVR,
Empirical predictor

HDM, BH, HD, B, S,
Hc, PF, MCPD, D 297 ANN-SVR R2 = 0.887

RMSE = 1.232

Nguyen and Bui [14] HGS–ANN, GOA–ANN
FA–ANN, PSO–ANN

HD, MCPD, B, PF, D,
SL, S NDS, DTS 252 HGS– ANN R2 = 0.922

RMSE = 1.761

Singh [15] ANN HDM, NH, HD, B, S,
SL, Hdis, Rdis 200 ANN R2 = 0.83

Nguyen et al. [16]
MARS, ANN, PSO–ANN,
MARS-PSO–ANN,
Empirical predictor

MCPD, D, HD, B, S,
SL, PF 193 MARS-PSO–

ANN
R2 = 0.902
RMSE = 1.569

Singh et al. [17] ANFIS, MVRA MCPD, D 192 ANFIS R2 = 0.98

Lawal et al. [18] ANN, BK, GEP, MLR
S/B, BH/B, B/HDM,
SL/B, SD/B, UCS, ρr,
MCPD, D

191 ANN R2 = 0.948
RMSE = 0.0008
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Table 1. Cont.

Authors Models Input Parameters No. of
Datasets

Best
Model

Performance
Indices

Singh and Verma [19] ANFIS B, S, D, IS, TC 187 ANFIS R2 = 0.77

Monjezi et al. [20] ANN HD, T, MCPD, D 182 ANN R2 = 0.949
(ANN)

Khandelwal and
Singh [21] ANN, MVRA HD, S, D, E, P-wave, B,

MCPD, BI, µ, VOD 174 ANN R2 = 0.98

Khandelwal [22] SVM, MVRA, Empirical
predictor MCPD, D 174 SVM R2 = 0.96,

MAE = 0.257

Khandelwal and
Singh [23] ANN TC, D 170 ANN R2 = 0.998

Monjezi et al. [24] MLPNN, RBFNN, GRNN D, B/S, MCPD, NHPD,
UCS, DPR 169 MLPNN

R2 = 0.954,
RMSE = 0.03

Yu et al. [25] ELM, HHO–ELM,
GOA–ELM,

D, HD, B/S, MCPD,
PF 166 GOA–ELM R2 = 0.9105

RMSE = 2.855

Mohamed [26] FS, ANN, MVRA D, MCPD 162 FS RMSE = 0.17
VAF = 87(%)

Bayat et al. [1] GEP B, S, T, D, MCPD 154 GEP R2 = 0.91
RMSE = 5.78

Khandelwal and
Kumar [27] ANN, Empirical predictor MCPD, D 150 ANN R2 = 0.919,

RMSE = 0.352

Singh et al. [28] GA, MVRA, ANN, ANFIS,
SVM

UCS, ρr, Hc, ï, ABS,
FRC 150 GA MAPE = 0.198

Zhou et al. [29]

RF, ANN, XGBoost,
AdaBoost, Bagging,
Jaya-X-GBoost
Empirical predictor

HDM, HD, CPH, S, B,
CL, BI, E, D, µ, P-wave,
VOD, ρe

150 Jaya-XGBoost R2 = 0.957
RMSE = 4.088

Mohamed [30] ANN
P-wave, HDM, VOD,
B, S, BH, HI, D, ρe, ρr,
MCPD, E, TC, ï, UCS,

149 ANN R2 = 0.94,
MSE = 0.00920

Rana et al. [31] CART, ANN, MVRA,
Empirical predictor

TC, TS, MCPD, NH,
HDM, D, HD, CPH 137 CART R2 = 0.95,

RMSE = 1.56

Verma and Singh [32] SVM, ANN, MVRA HD, B, S, T, MCPD,
TC, D 137 SVM MAPE = 0.001

Verma and Singh [33] GA, ANN, MVRA,
Empirical predictor HD, B, S, T, MCPD, TC 127 GA R2 = 0.99,

MAPE = 0.088

Ghasemi et al. [34] FS, MRA, Empirical
predictor B, S, T, NHPD 120 FS R2 = 0.945,

RMSE = 2.73

Ghasemi et al. [35] ANFIS-PSO, SVR B, S, T, NH, MCPD, D 120 ANFIS-PSO R2 = 0.957,
RMSE = 1.83

Bui et al. [36]
ANN, SVM, Tree-based
ensembles, CSO–ANN
Empirical predictor

MCPD, CPH, D, B, S,
PF 118 CSO–ANN R2 = 0.99

RMSE = 0.246

Dehghani and
Ataee-pour [37]

ANN, Empirical predictor,
Dimensional analysis

S, B, DPR, NH, PF, D,
CPD, MCPD, PLI 116 ANN R2 = 0.945,

RMSE = 0.0245
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Table 1. Cont.

Authors Models Input Parameters No. of
Datasets

Best
Model

Performance
Indices

Zhongya [38] BPNN, MVRA, ELM-
FA MIV

D, MCPD, B/S, NHPD,
UCS, DPR 108 ELM-FA MIV R2 = 0.96,

RMSE =0.21

Armaghani et al. [39] MPMR, LSSVM, GPR
PSO–ELM, AGPSO–ELM

B/S, MCPD, D, T, PF,
HD 102 AGPSO–ELM R2 = 0.90

RMSE = 0.08

Faradonbeh et al. [40] GEP, NLMR T, B/S, PF, D, HD,
MCPD 102 GEP R2 = 0.874

Mokfi et al. [41] GMDH, GEP, NLMR MCPD, PF, T, B/S, D,
HD 102 GMDH R2 = 0.874,

RMSE = 0.963

Ismail et al. [42] GEP, ANFIS, SCA-ANN
Empirical predictor D, MCPD, ρr, SRH 100 SCA-ANN R2 = 0.999

RMSE = 0.0094

Hajihassani et al. [43] ICA-ANN, ANN, MLR B/S, T, MCPD,
P-wave, E, D 95 ICA-ANN R2 = 0.97

Chen et al. [44]

FA–SVR, PSO–SVR,
GA–SVR, FA–ANN,
PSO–ANN, GA–ANN,
MFA–SVR

B/S, T, MCPD, D, E,
P-wave 95 MFA–SVR R2 = 0.984

RMSE = 0.614

Peng et al. [45] ANN, ANN-PSO,
ANN-GA, ANN

MCPD, D, PF, SD,
RQD, B, S 93 ANN-PSO R = 0.945

RMSE = 0.680

Hasanipanah et al. [46] CART, MLR, Empirical
predictor MCPD, D 86 CART R2 = 0.95,

RMSE = 0.17

Hudaverdi and
Akyildiz [47]

ANN, MLR
Empirical predictor MCPD, D, B, S 86 ANN RMSE = 5.28

Zhu et al. [48]
ANN, ANFIS, RANFIS
CRANFIS, CRANFIS-PSO,
Empirical predictor

B, S, T, PF, MCPD, D 84 CRANFIS-PSO R2 = 0.997
RMSE = 0.076

Shahnazar et al. [49] PSO-ANFIS, ANFIS D, MCPD 81 ANFIS-PSO R2 = 0.984,
RMSE = 0.4835

Hasanipanah et al. [50] SVM, Empirical predictor MCPD, D 80 SVM R2 = 0.96,
RMSE = 0.34

Abbaszadeh
Shahri et al. [51]

GFFN-FA, GFFN-ICA,
GFFN B, S, TC, D, MCPD 78 GFFN-FMA R2 = 0.97

RMSE = 0.187

Saadat et al. [52] ANN, Empirical predictor MCPD, D, SL, HD 69 ANN R2 = 0.95,
RMSE = 8.79

Álvarez-Vigil
et al. [53]

ANN, MLR
RMR, BCPRA, D,
HDM, S, HD, B,
MCPD, VOD, TC, NH

60 ANN R2 = 0.96,
RMSE = 0.65

Lawal et al. [3] ANN, GEP, MFO-ANN,
MLR, Empirical predictor

HD, CPD, NH, TC, D,
RMR 56 MFO-ANN R2 = 0.957

MSE = 0.0008

Amini et al. [54] ANN D, ρe Ve, B, S, TC 51 ANN R2 = 0.96

[55] CART, MR, Empirical
predictor MCPD, D 51 CART R2 = 0.92,

RMSE = 0.97

Iphar et al. [56] ANFIS, MLR MCPD, D 44 ANFIS R2 = 0.98,
RMSE = 0.80
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Table 1. Cont.

Authors Models Input Parameters No. of
Datasets

Best
Model

Performance
Indices

Armaghani et al. [57] BP-ANN, PSO–ANN HDM, HD, MCPD, S,
B, SL, PF, ρr, SD, NR 44 PSO–ANN R2 = 0.93

Lapčević et al. [58] ANN CPH, DT, MCPD, TC,
D 42 ANN

R2 = 0.95

Mohamadnejad
et al. [59]

SVM, GRNN, Empirical
predictor MCPD, D 37 SVM R2 = 0.89,

RMSE = 1.62

Monjezi et al. [60] GEP, MLR, NLMR D, MCPD 35 GEP R2 = 0.918,
RMSE = 2.321

Li et al. [61] SVM, Empirical predictor MCPD, D 32 SVM R2 = 0.945

Ravilic et al. [62] MCPD, D, TC ANN, Empirical
predictor 32 ANN R2 = 0.9

RMSE = 0.018

Monjezi et al. [12] ANN, Empirical predictor TC, MCPD, D 20 ANN R2 = 0.924,
RMSE = 0.071

Ragam and
Nimaje [63]

GRNN, Empirical
predictor D, MCPD 14 GRNN R2 = 0.999,

RMSE = 0.0001

2. Materials and Methods
2.1. Materials

The dataset used for this research work was gathered from 34 opencast mines. Table 2
presents the different mines/quarries along with the excavation materials. The blasting
operations and the output, such as the induced vibration, flyrock and air overpressure
from the different sites, are under monitoring by the rock excavation engineering division
of the Central Institute of Mine and Fuel Research India (CSIR-CIMFR). In addition, the
largest granite aggregate quarry, namely OKOUTA CARRIERE SA, located in Setto, Benin,
was considered in this study. Thousands of blasting data were compiled and subjected to
curation. After filtering, 1001 complete measured peak particle velocities with ten corre-
sponding blast-design parameters, i.e., hole diameter (HDM), hole depth (HD), number of
holes (NH), burden (B), spacing (S), stemming (SL), charge per hole (CPH), total charge
(TC), maximum charge per delay, (MCPD), and monitoring distance (D), were considered
to establish the models. Table 3 presents the descriptive statistics of the input and output
variables. The correlation between input variables and target PPV can be seen from the Pear-
son correlation matrix presented in Figure 2. It can be noticed that there is no collinearity
between the predictor variables and the output PPV that can significantly influence model
efficiency. To further evaluate how sensitive the output response PPV is to the independent
variables, sensitivity analysis was performed using cosine amplitude technique [64]. The
cosine amplitude can be obtained using the following expression (Equation (1)). The value
of rij closer to unity indicates significant influence of the input variable on the output PPV.
Figure 3 shows the relative strength of all input variables to PPV. The value of rij ranges
between 0.605 to 0.902, suggesting that all the input variable influences the response PPV.
Because each variable has a relative influence (rij > 0.6) on the output variable PPV, all
10 predictor variables were used to establish the models.

rij =
∑n

k=1 (Yik∗Yok)√
∑n

k=1 Yik
2 ∑n

k=1 Yok
2

(1)

where Yi and Yo are the inputs and output, respectively.
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Table 2. List of the investigated mines/quarries for data-gathering.

No. Mines Company

1 Chandan Coal Mine, Jharia Bharat Cooking Coal Limited
2 Patherdih Coal Mine, Jharia Bharat Cooking Coal Limited
3 Bera Coal Mine, Bastacola Bharat Cooking Coal Limited
4 Golakdih Coal Mine, Bastacola Bharat Cooking Coal Limited
5 Jogidih Coal Mine, Govindpur Bharat Cooking Coal Limited
6 Dahibari Coal Mine, Chanch Victoria Area Bharat Cooking Coal Limited
7 Gopalichuk Coal Mine, Pootkee Balihari Area Bharat Cooking Coal Limited
8 Bagdigi Coal Mine, Lodna Bharat Cooking Coal Limited
9 Tetulmari Coal Mine, Sijua Area Bharat Cooking Coal Limited
10 Kujama Coal Mine, Bastacola Bharat Cooking Coal Limited
11 Bhanora Coal Mine, Sripur area Eastern Coalfields Limited
12 Magadh Coal Mine, Magadh Amrapali Area Central Coalfields Limited
13 Pakri Barwadih Coal Mine, Barakagaon National Thermal Power Corporation
14 Tasra Coal Mine, Jharia Steel Authority of India Limited
15 Bermo Coal Mine, Bokaro Damodar Valley Corporation
16 Jamuna Coal Mine, Jamuna and Kotma Area South Eastern Coalfields Limited
17 Ramagundam-III Area Coal Mine, Peddapalli Singareni Collieries Company Limited
18 Aditya Cement Limestone Mine, Shambhupura M/S Ultratech Cement
19 Adhunik Cement Limestone Mine, Meghalaya Adhunik Cement Limestone Mine
20 Manal Limestone Mine, Rajban Cement Corporation of India Limited
21 Daroli Limestone Mine, Udaipur Daroli Limestone Mines
22 SK2 Block Vikram Limestone Mine, Khor Vikram Cement works
23 Karunda Limestone Mine, Chittorgarh J K Cement
24 Malikhera Limestone Mine, Chittorgarh J K Cement
25 Murlia Block Limestone Mine, Chandrapur Murli Industries Limited
26 Jhamarkotra Rock Phosphate Mine, Udaipur Rajasthan State Mines and Minerals Limited
27 Sanchali Calcite Mine, Udaipur M/s Wollmine India Pvt. Limited
28 Guali Iron Ore Mine, Topadihi M/s R. Sao

29 Narayanposhi Iron and Manganese Ore Mine Koria,
Sundergarh M/s Aryan Mining and Trending Corp. Limited

30 Balda Block Iron Ore Mine, Keonjhar M/s Serajuddin and Company, Orissa
31 Banduhurang Opencast Uranium Mines Uranium Corporation of India Limited
32 Obra Stone Mine (Dolomite quarry) M/s B. Agarwal Stone Products Limited, Sonebhadra

33 Pachami Hatgacha Stone Mining, Birbhum West Bengal Mineral Development and Trading
Corporation Limited

34 Granite aggregate quarry, Setto, Benin republic OKOUTA CARRIERES SA

Table 3. Descriptive statistics of the input and output variables.

Parameters Unit Symbol Category Min Max Mean Median Sd. Dev

Hole diameter mm HDM Input 32 269 126.5 115 32.04
Hole depth m HD Input 0.7 13.5 6.59 6.2 2.28
Number of holes - NH Input 1 199 31.52 21 33.06
Burden m B Input 0.6 9 3.13 3 1.05
Spacing m S Input 0.6 10 4.04 3.5 1.52
stemming length m SL Input 0.5 7 3.04 3 0.94
Charge per hole kg CPH Input 0.17 400.75 39.2 32.14 36.49
Total charge kg TC Input 5.56 41294 1390.86 544.46 2767.81
Maximum charge per delay kg MCPD Input 2.19 2545.5 85.92 45.5 169.98
Monitoring distance m D Input 25 1500 321.36 293 185.45
Peak particle velocity mm/s PPV Output 0.22 43.59 3.37 2.44 3.12
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Figure 2. Correlation matrix of PPV dataset.

Figure 3. Sensitivity analysis of the input variables on PPV.
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2.2. Methods

This section presents a brief description of the proposed models applied in the present
study. As mentioned earlier, 1001 data points were randomly split into two sets, namely
training and testing. The training set comprises 800 datasets, i.e., 80% of all the data points,
and was employed to calibrate the models. The remaining 20% (201 datasets) was used to
test the models. Two white-box machine-learning techniques, namely CART and MARS,
were developed. In addition, the traditional SVR algorithm, as well as MLR and different
empirical predictors, were used for comparison.

2.2.1. Empirical Methods

Several empirical equations have been developed to predict PPV. Scaled distance-
based-empirical predictors involving maximum charge per delay and distance between
blasting and measuring point have been suggested for the prediction of blast-induced PPV.
The performance of five commonly used empirical methods, as presented in Table 4, was
evaluated on the dataset used in this research.

Table 4. Some PPV predictive methods based on empirical equations.

Name Equations

USBM PPV = K
(

D/
√

MCPD
)−B

Langefors–Kihlstrom (L–K) PPV = K
(√

MCPD/D2/3
)B

Ambraseys–Hendron (A–H) PPV = K
( 3√MCPD

D

)B

IS PPV = K
(

MCPD/D2/3
)B

CMRI PPV = n + K
(

D/
√

MCPD
)−1

The site coefficients ‘K’, ‘A’, ‘B’, and ‘n’ as presented in the equations are site-specific
and can be obtained using multiple regression.

2.2.2. Multiple Linear Regression (MLR)

MLR is a statistical method used to model the relationship between two or more pre-
dictors (input variables) and one outcome variable by fitting a linear equation. Every input
variable x (independent variable) is associated with a value of the response y (dependent
variable). Here the blast-design parameters in Table 3 represent the predictor variables and
the output response PPV. MLR assumes that the relationship between predictor variables
and the output response is linear. MLR can be mathematically expressed as in Equation (2).

y = β0 + β1x1 + β2x2 + . . . . + βnxn + e (2)

where y stands for the output response, xi (i = 1, 2, . . . . . . , n) denotes the input variables,
βi (i = 0, 1, 2, . . . . . . , n) are the regression coefficients, and e the prediction error.

2.2.3. Classification and Regression Tree (CART)

The classification and regression tree, known as CART, is one of the decision-tree
algorithms that has been in use for about 40 years [65] and remains a popular machine-
learning tool. CART operates using recursive partitioning of the data to break it up
into smaller parts. It is a non-parametric method, with the capability of handling high-
dimensional data without any prior normalisation. A CART model output is represented
as an inverted tree, with a main root node and internal nodes that end up with a terminal
node (Figure 4).
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Figure 4. Example of a simple decision tree.

The root node depicts the most influential input variable on the output. From the
root node, CART evaluates all possible splits of all predictor variables, classifies them,
and selects the “greatest” single split overall. The best split of the variable designated is
better than the best split of any other predictor with the minimum sum of squares and
placed at an internal node. The internal node has relatively more cases and is further
partitioned based on the same sum-of-squares criterion until a terminal node is reached
relatively homogenously. In binary partitioning, the best predictor at each internal node
splits the data into two subsets using yes/no or if/then rules. The terminal node represents
a prediction value of the response based on the set decision rules. The number of internal
nodes depends on the complex interaction between the input variables and the output.
Assuming a partition into R regions, R1, R2..., Rm and the output as a constant Cm in
each region, the adaptive basis function framework of the recursive partitioning can be
represented as in Equation (3) [66].

f (x) =
M

∑
m=1

Cm I(x ∈ Rm) (3)

where Rm is the mth region and Cm is the mean response in a given region (scalar for
regression, class probabilities for multi-class classification).

One of the challenges of CART, as with any other decision-tree algorithm, is the
difficulty of obtaining the optimum tree that represents the data. A small tree is easy to
interpret, but may lack information on the important structure of the data, whereas an
overgrowing tree might overfit the data and be difficult to understand. There are several
processes to reach the optimum tree for a given dataset, and the common approach is to
grow the full tree and subject it to the pruning process [67].

2.2.4. Support Vector Regression (SVR)

Support vector regression is a regression algorithm derived from support vector
machine (SVM). Initially, the algorithm was developed by Cortes and Vladimir [68] for
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classification purposes and later extended to solve regression problems for continuous
values and designated as SVR. Unlike a simple linear regression, where the algorithm
works to minimize the error rate, SVR tries to fit the error within a certain margin of
tolerance (epsilon). The threshold limit is defined by two boundary lines away from the
reference data which fit the maximum data points, known as the hyperplane. The epsilon
is a hyperparameter used to tune the model. Figure 5 illustrates a one-dimensional SVR
technique where the data points represent the predicted values along with the best fit
(hyperplane). The data points, which determine the direction of the boundaries, are termed
support vectors. The support vectors participate in finding a match between the data point
and the hypothesis function that defines the best fit of the data (hyperplane). Assuming the
hyperplane is a straight line toward the y axis, the hypothesis function of the hyperplane
can be expressed as presented in Figure 5, as well as the expression of the two boundary
limits. SVR tries to find the maximum margin that best fits the hyperplane by constraining
the errors to the acceptable threshold limit defined as the maximum error (ε, epsilon). On
the other hand, the algorithm tends to satisfy the condition −ε<y−(wx+b)<+ε stating
the fact that y = Wx + b = 0. The epsilon parameter is used to optimize the model
by constraining the error as |yi−wixi|≤ε. The slope w (learned weight vector) helps to
optimize the margin |ε| by reducing the distance ζ between the margin limits and predicted
values outside the bounds. The objective function is to maximize the margin (minimizing
ζ, ζ ≥ 0) within the acceptable error tolerance (|yi − wixi|≤ ε+|ζi| ) to obtain the optimal
hyperplane, and is expressed as in Equation (4).

min
1
2
||w||2+C

n

∑
i=1

|ζi| (4)

where yi,∈ R is the response variable, wi is the weight vector, and xi, ∈ R is the training
input variable. C is another tuning parameter that controls the error margin defined by ε

and the weight vector |w|.

Figure 5. Schematic illustration of one-dimensional SVR.
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For a non-linear regression, as is the case in the present study, a kernel function is used
to transform the data to higher-dimensional feature space and perform linear separation.
Gaussian Radial Basis Function (RBF) is widely used for non-linearity relationships between
predictors and response variables, and was adopted in this study. The equation of RBF is
as follows (Equation (5)).

k(x, xi) = exp

(
−||x− xi||2

2σ2

)
(5)

where σ is the kernel RBF parameter that must be tuned during the calibration of the model.

2.2.5. Multivariate Adaptive Regression Splines (MARS)

MARS is a non-parametric ensemble machine-learning regression technique method
designed for multivariate non-linear regression problems. The algorithm can split the data
into several intervals (splines) depending on the variable’s pattern. Each spline represents
a linear function that best characterizes the data. A MARS model can be viewed as an
ensemble of linear functions referred to as splines or basis functions (BFs) as illustrated
in Figure 6. The end of a spline and the beginning of another is denoted as a knot. Two
general steps describe the functionality of a MARS model: a forward procedure followed by
a backward procedure. In the forward stage, the algorithm splits the data into an excessive
number of splines, which may lead to an overfit model. The backward step is a pruning
procedure where all the splines that poorly contribute to the overall model performance
are automatically deleted [69]. The generalized MARS model with appropriate knots can
be expressed using the combination of the weighted BFs of all the linear splines [70] as in
Equation (6).

f (x) = β0 +
n=N

∑
n=1

βnBF(x) (6)

where N is the total number of splines BFs during the forward stage, β0, and βn, are
the intercept and the weighting coefficients of the nth splines (BF), respectively, and are
estimated using the least-squares method.

Figure 6. Relationship between a set of predictors xi and an output variable y.
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The performance of the model in the pruning stage is evaluated using generalized
cross-validation (GCV) on the training dataset. GCV error includes both residual error
and model complexity [71]. A MARS model with the lowest GCV error is considered the
optimal model. The GCV can be mathematically expressed as in Equation (7) [66].

GCV =
1
N

n=N

∑
n=1

(Yn − f (xn))
2/
(

1− C
N

)2
(7)

with C = r + p ∗ d
where N is the number of observations, f (xn) is the estimated output variable by the

nth piecewise linear function (BFs) (n = 1, 2,..., N), Yn is the nth measured output variables,
C is an effective number of parameters, where r denotes the number of independent BFs, d
the number of knots during the forward stage, and p the penalty for adding a BF.

3. Results

The present paper adopts two statistical indices, namely co-efficient of determination
(R2) (Equation (8)) and root means square error (RMSE) (Equation (9)), to assess the
optimum model and evaluate the relationship between the measured and predicted PPV
value based on the proposed models.

R2 = 1− ∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − yi.)

2 (8)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (9)

yi represents the measured PPV, ŷi is the predicted PPV from the model, yi. represents
the average value of the measured PPV, and n the number of samples in the training or
testing stages.

All the models were developed using Python (Anaconda3) codes through a Spyder
environment. Overall, 800 training datasets were used to fit the models, whereas 201
independent datasets were employed for model testing.

3.1. MLR

The multiple linear regression equation based on the training dataset is presented in
Equation (10).

PPV = 1.9830 + 0.0171 × HDM + 0.2007 × HD − 0.0053 × NH + 0.0350 × B + 0.5605 × S − 0.101 × SL
− 0.01635 × CPH + 0.0003 × TC − 0.000019 ×MCPD − 0.011698 × D

(10)

Table 5 reports the analysis of variance (ANOVA) of the fit model. The trained model
(Equation (10)) was assessed using unseen data (test data). The performance between the
measured and predicted PPV values is presented in Figure 7. As it can be seen, the MLR
model yielded an R2 of 0.384 and 0.4 for training and testing, respectively. This shows
that MLR poorly explains the relationship between PPV and the predictor variables and
confirms the non-linear interaction between variables.

Table 5. MLR model output.

Parameters Coefficients Standard Error t Stat p-Value

Intercept 1.9830 0.5470 3.6254 0.0003
HDM 0.0171 0.0044 3.8961 0.0001
HD 0.2007 0.0622 3.2266 0.0013
NH −0.0053 0.0042 −1.2416 0.2148
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Table 5. Cont.

Parameters Coefficients Standard Error t Stat p-Value

B 0.0350 0.2057 0.1704 0.8648
S 0.5605 0.1422 3.9411 0.0001
SL −0.1010 0.1309 −0.7714 0.4407
CPH −0.0163 0.0048 −3.4138 0.0007
TC 0.0003 0.0001 4.2827 0.0000
MCPD −0.000019 0.0009 −0.0205 0.9837
D 0.011698 0.0006 −20.6706 0.0000

Figure 7. Measured versus Predicted PPV by MLR.

3.2. Empirical Methods

Scaled law and several modified empirical equations based on charge quantity and
distance between blasting and measuring point have been suggested for measuring blast-
induced PPV. As mentioned earlier, the empirical methods involve site coefficients and
80% of all the datasets (801 datasets) termed training data was employed to determine the
site constants. The remaining 20% (201 datasets) was considered to be testing for model
performance evaluation. Using regression analysis, the site coefficients were obtained
and reported in Table 6. The obtained coefficients were employed to predict PPV using
an independent dataset (testing dataset). Figure 8a–e present the fitting curves between
the measured and the predicted PPV for different empirical methods employed. The
performance indices (Table 6) indicate that the Ambraseys–Hendron equation yielded the
highest R2 on the testing dataset, followed by the USBM and CMRI predictor, respectively.

Table 6. Computed site constants and performance indices from empirical predictors.

Name/References Constant Coefficients Performance Indices

Training Testing

K B n RMSE R2 RMSE R2

USBM 66.676 0.902 - 2.369 0.467 0.918 0.630
L-K 1.567 0.220 - 2.370 0.062 1.405 0.096
A-H 211.910 1.034 - 2.328 0.513 0.855 0.673

IS 2.313 0.346 - 3.213 0.150 1.324 0.223
CMRI 85.482 - 0.478 2.318 0.471 0.890 0.622
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Figure 8. Cont.
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Figure 8. (a) Measured versus Predicted PPV (USBM Method). (b) Measured versus Predicted
(L–K method). (c) Measured versus Predicted (A–H). (d) Measured versus Predicted (IS method).
(e) Measured versus Predicted (CMRI method).

3.3. CART Model for the Prediction of PPV

The CART model was built using the Python Scikit-learn package through the Spyder
(Anaconda3) environment. Scikit-learn uses an optimized version of the CART algorithm.
Initially, the default parameters were employed to grow the full tree. Cost–complexity
pruning analysis is widely employed to prune regression trees. The parameters cost–
complexity and pruning-alpha (ccp_alpha) were employed to prune the obtained tree. The
default value of ccp_alpha is zero, corresponding to the complex initial tree to be pruned.
The complexity of the tree decreases with the increase of ccp_alpha ∈ R (R ≥ 0). The
optimal tree is the subtree with the largest cost–complexity and lowest error on unseen
data (test data). Figure 9 presents the error (RMSE) trend on both the training and testing
datasets for varying values of ccp_alpha. As can be expected, the error increases as the
ccp_alpha values increase. A relatively steady level can be seen from 0.009 to 0.012 on the
training error curve (Figure 9) with the lowest RMSE of 0.524 at ccp_alpha 0.01. A rational
error (RMSE) of 1.139 and R2 of 0.744 was obtained on the testing dataset (Figure 9 and
Table 7). Therefore, the value of 0.01 was considered the optimum ccp_alpha parameter.
The performance indices for all iterations are presented in Table 7. Although the pruning
stage decreases the performance of the training set, the model with ccp_alpha of 0.01 can
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yield efficient prediction on a new dataset and be considered the optimum CART model.
The structure of the corresponding regression tree is presented in Figure 10.

Figure 9. RMSE performance of potential CART models under different ccp_alpha values.

Table 7. Performance metric of CART models under different ccp_alpha values.

ccp_alpha
Training Testing

RMSE R2 RMSE R2

0.001 0.016 0.890 1.135 0.733
0.002 0.145 0.881 1.235 0.707
0.003 0.169 0.860 1.262 0.701
0.004 0.263 0.858 1.278 0.693
0.005 0.384 0.854 1.284 0.688
0.006 0.454 0.851 1.284 0.680
0.007 0.484 0.844 1.284 0.690
0.008 0.483 0.845 1.270 0.690
0.009 0.531 0.834 1.170 0.680
0.01 0.524 0.834 1.139 0.744
0.011 0.536 0.833 1.141 0.742
0.012 0.550 0.813 1.268 0.694
0.013 0.584 0.823 1.273 0.692
0.014 0.599 0.821 1.212 0.716
0.015 0.623 0.816 1.258 0.698
0.016 0.664 0.809 1.280 0.689
0.017 0.681 0.805 1.283 0.689
0.018 0.690 0.804 1.291 0.704
0.019 0.690 0.804 1.243 0.704
0.02 0.709 0.800 1.247 0.702
0.021 0.730 0.796 1.294 0.684
0.022 0.740 0.794 1.295 0.683
0.023 0.740 0.794 1.247 0.702
0.024 0.773 0.787 1.295 0.684
0.025 0.796 0.782 1.308 0.678
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Figure 10. Tree structure for the proposed CART model.

The relationship between the measured and predicted PPV-base CART model is
presented in Figure 11 for both training and testing datasets. The proposed CART model
with an R2 of 0.74 on unseen data (test dataset) outperformed the best empirical predictor
(Ambraseys–Hendron equation, R2 = 0.67) and multiple linear regression (R2 = 0.4). It can
be employed to estimate PPV with a prediction accuracy of over 74%.

Figure 11. Measured versus Predicted PPV (CART model).

3.4. SVR Model for the Prediction of PPV

In the SVR model, the radial basis function (RBF), which best explains the non-linearity
relationship between variables, was employed to establish the model using Python nu-
merical code. Two key hyperparameters including cost–complexity (c) and gamma (δ)
govern the SVR model-based RBF kernel function. To obtain the optimum value of ‘c’,
several iterations were performed as presented in Figure 12. The value for which minimum
RMSE was attained on the testing dataset was considered the optimum value, which was
found to be 32 at the ninth iteration. The final ‘c’ value was fixed while the other hyper-
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parameter gamma (δ) was varied. The RMSE curve change for parameter gamma (δ) on
the testing dataset as presented in Figure 13 reveals that the value of gamma (δ) for which
minimum error (RMSE = 1.619) is archived is δ = 0.1 and was considered to be the optimum
parameter (δ).

Figure 12. RMSE change curve for cost–complexity ‘c’ parameter for SVR.

Figure 13. RMSE change curve for gamma parameter.

A summary of the overall SVR models with varying values of ‘c’ and the optimum
gamma δ = 0.1 is presented in Table 8. The proposed model with ‘c’ = 32 and δ = 0.1 yielded
an R2 and RMSE of 0.9007 and 1.0047 for the training dataset and 0.876 and 0.9981 for
testing datasets. The relationship between measured and predicted PPV is presented in
Figure 14. The results indicate better accuracy of the SVR model as compared to MLR,
empirical, and CART models.
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Table 8. Co-efficient of determination R2 change curves for endspan_alpha and minspan_alpha.

c Training Testing c Training Testing

RMSE R2 RMSE R2 RMSE R2 RMSE R2

1 2.2819 0.4879 1.619 0.6739 120 0.7502 0.9446 1.0437 0.8644
2 2.0996 0.5664 1.4207 0.7489 128 0.7367 0.9462 1.0424 0.8648
4 1.8943 0.647 1.2273 0.8126 130 0.7367 0.9466 1.0423 0.8648
8 1.6598 0.729 1.0635 0.8592 140 0.7247 0.9483 1.0441 0.8643

10 1.5724 0.7568 1.0266 0.8688 150 0.7169 0.9494 1.0488 0.8631
16 1.3689 0.8157 0.9896 0.8781 160 0.7054 0.951 1.0555 0.8614
20 1.25 0.8452 0.9966 0.8764 170 0.6945 0.9525 1.0608 0.86
30 1.0378 0.894 0.9967 0.8764 180 0.6844 0.9539 1.0642 0.8591
32 1.0047 0.9007 0.9981 0.876 190 0.6749 0.9551 1.0665 0.8584
40 0.9122 0.9181 0.9931 0.8773 200 0.6666 0.9562 1.0685 0.8579
50 0.8694 0.9256 0.9964 0.8764 300 0.6064 0.9638 1.0894 0.8523
60 0.8445 0.9298 1.0073 0.8737 500 0.5691 0.9681 1.1134 0.8457
64 0.8366 0.9311 1.0097 0.8731 1000 0.533 0.972 1.166 0.8308
70 0.8267 0.9327 1.0146 0.8719 5000 0.4513 0.9799 1.3085 0.7869
80 0.8115 0.9352 1.0289 0.8682 10000 0.4189 0.9827 1.3823 0.7622
90 0.7951 0.9378 1.0344 0.8668 50000 0.347 0.9881 2.0686 0.4677

100 0.7789 0.94033 1.0394 0.8656 100000 0.3258 0.9895 2.786 0.3681
110 0.7643 0.9425 1.0431 0.8646

Figure 14. Measured versus Predicted PPV (SVR model).

3.5. MARS Model for the Prediction of PPV

MARS model was trained using the py-earth Python package through the Spyder
(Anaconda3) environment. The py-earth library incorporates all the parameters involved
in the MARS algorithm as per Friedman [70]. In the training procedure, several iterations
were performed using key hyperparameters such as penalty parameter, endspan_alpha,
and minspan_alpha. The performance of the developed model during training stage with
varying values of the hyperparameters are presented in Figures 15 and 16 for penalty and
endspan/minspan_alpha, respectively. From Figure 15, it can be seen that the minimum
error (RMSE = 0.227) during the testing stage was obtained at the penalty value of 3.0 and
considered the optimum. Then, the parameters endspan_alpha and minspan_alpha were
varied consecutively (Table 9), keeping the optimum penalty value constant at 3.0. The
value of 0.05 for both parameters yielded the highest performance (R2 = 0.951) on training
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and testing datasets (Figure 16). The optimum hyperparameter values yielded a total of
55 candidate BFs, as shown in Figure 17. It is worth noting that the generalized cross-
validation (GCV) method is applied to remove insignificant BFs during the backward stage.
Figure 17 indicates 32 prominent numbers of terms with the highest general co-efficient of
determination (R2). The remaining terms (BFs) does not influence the model performance
as the R2 remains relatively unalterable with further BFs (Figure 17). Therefore, the insignif-
icant BFs were removed (pruned) and the final MARS model involves 32 imperative BFs. A
similar methodology was employed by Abdulelah Al-Sudani et al. [72] and Chen et al. [73]
in previous research to identify the optimum MARS model. The elected 32 BFs and their
corresponding coefficients are presented in Table 10 alongside the general regression equa-
tion. The application of this equation consists of summing the regression equations of each
spline (BF). The obtained value represents the target response PPV based on the proposed
MARS model. From Table 9, it can be seen that the performance of both training and testing
data are similar, suggesting a good generalization ability of the proposed MARS model.

Figure 15. RMSE change curve for penalty parameter.

Figure 16. R2 change curve for minispan alpha and endspan alpha parameter.
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Table 9. Performance metrics of different MARS models with varying values of minispan alpha and
endspan of alpha.

Minispan/Endspan Alpha
Training Testing

RMSE R2 RMSE R2

0.01 0.413 0.935 0.601 0.875
0.05 0.463 0.927 0.227 0.951
0.1 0.439 0.931 0.476 0.905
0.15 0.440 0.931 0.523 0.894
0.2 0.440 0.931 0.523 0.894
0.25 0.468 0.926 0.559 0.886
0.3 0.468 0.926 0.559 0.886
0.35 0.468 0.926 0.559 0.886
0.4 0.468 0.926 0.559 0.886
0.45 0.440 0.931 0.499 0.899
0.5 0.440 0.931 0.499 0.899
0.55 0.440 0.931 0.499 0.899
0.6 0.425 0.933 0.577 0.881
0.65 0.457 0.928 0.494 0.901
0.7 0.430 0.932 0.599 0.876
0.75 0.456 0.928 0.583 0.880
0.8 0.456 0.928 0.583 0.880
0.85 0.456 0.928 0.583 0.880
0.9 0.488 0.923 0.538 0.891
0.95 0.488 0.923 0.538 0.891
1 0.334 0.947 0.628 0.869

Figure 17. Pruning stage and model selection.

Further analysis is performed to evaluate the importance of the input variables for the
MARS model. Figure 18 shows the relative importance of the input parameters expressed
as percentages. It can be seen that the monitoring distance (D) and maximum charge per
delay (MCPD) are the critical predictors, whereas the number of holes (NH) has the least
influence on PPV. This is in line with the results of previous investigations, stating the
strong relationship between scaled distance and PPV [74]. The relationship between the
predicted and measured PPV based on the proposed MARS model is shown in Figure 19.
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Table 10. Effective BFs and the corresponding coefficients.

Basis Function BF(x) Co-Efficient (βn) Basis Function BF(x) Co-Efficient (βn)

Intercept (β0) 1.960120000 BF17 = h(145−NH)*B*h(341−D) −0.000145193
BF1 = h(D−341) −0.002770310 BF18 = SL*TC*h(1130−TC) −0.000002270
BF2 = h(S−7.5)*h(341−D) 0.402890000 BF19 = MCPD*h(408−D)*h(156.25−CPH) 0.000001079
BF3 = h(10000−TC)*h(341−D) 0.000003126 BF20 = h(NH−145)*B*h(12.25−HD) 0.001295930
BF4 = D*h(341−D) −0.000149723 BF21 = h(HDM−260)*h(CPH−156.25) 0.001648200
BF5 = TC*h(10000−TC)*h(341−D) 0.000000001 BF22 = h(408−D) −0.023060800
BF6 = B*h(341−D) 0.018892700 BF23 = D*D*h(341−D) 0.000000465
BF7 = MCPD*h(7.5−S)*h(341−D) −0.000095901 BF24 = h(S−7.5)*HDM*h(12.25−HD) −0.002203750
BF8 = MCPD*B*h(341−D) −0.000123622 BF25 = h(7.5−S)*HDM*h(12.25−HD) −0.000569359
BF9 = S*h(10000−TC)*h(341−D) 0.000001058 BF26 = HDM*B*h(341−D) 0.000183443
BF10 = h(408−D)*h(156.25−CPH) −0.000181658 BF27 = SL*HDM*h(12.25−HD) 0.000580015
BF11 = HD*h(408−D)*h(156.25−CPH) 0.000017127 BF28 = MCPD*h(341−D) 0.000683227
BF12 = h(145−NH)*h(408−D)*h(156.25−CPH) 0.000002181 BF29 = SL*B*h(341−D) −0.002187630
BF13 = TC*h(1130−TC) 0.000008631 BF30 = B*B*h(341−D) −0.003844060
BF14 = HDM*h(1130−TC) −0.000025563 BF31 = HDM*h(10000−TC)*h(341−D) −0.000000028
BF15 = HDM*HDM*h(1130−TC) 0.000000146 BF32 = HDM*D*h(341−D) −0.000001313
BF16 = h(NH−145)*B*h(341−D) −0.001396160

PPV = β0 +
n=N
∑

n=1
βnBF(x)Resulting expression

Figure 18. Predictor importance analysis for MARS model.

Figure 19. Measured versus Predicted PPV (MARS model).
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4. Discussion

Predicting PPV is one technique to minimize the damage induced by rock-blasting
vibration in mines. PPV is influenced by various blasting parameters. The ability to identify
the most influential factors is key to building a good predictive model. This study uses
cosine amplitude and observes the influence of rock-blasting parameters on the induced
PPV. These include hole diameter, hole depth, number of holes, burden, spacing, stemming
length, charge per hole, total charge, maximum charge per delay, and monitoring distance.
These parameters diversely influence PPV and have been used by various researchers to
develop PPV predictive models based on machine-learning technique [9,42,75]. Machine
learning is extensively used to solve several prediction problems because of its accuracy as
compared to empirical and statistical methods. The prediction accuracy depends upon the
techniques employed and inter-correlation between input and output variables. It has been
observed that a model generalization ability increases with the input variables and the
number of datasets. Recently, hybrid models have been introduced to increase prediction
accuracy. However, these models are difficult to interpret and implement by practitioners
in the field. White-box ML techniques such as MARS and CART can provide reasonable
prediction accuracy and are easily implementable. This study develops a simple ML model
that can be easily used by field practitioners to predict PPV. Many datasets from various
geo-environments have been involved to develop conventional ML models to increase
generalization ability. The models were well trained based on a trial-and-error approach
to obtain the best fitting with minimum error for PPV prediction. Three ML techniques,
including MARS, CART and SVR, were employed in this study, and the results were
compared to conventional statistical methods and empirical predictors. The performance
of all developed models for both training and testing sets is reported in Table 11. As
can be seen, the best performances were obtained through machine-learning techniques.
This confirms that the relationships between the influential parameters and the PPV are
non-linear.

Table 11. Performance indices of the proposed models for predicting PPV.

Model
Training Testing

RMSE R2 RMSE R2

USBM 2.369 0.489 0.918 0.630
Langefors–Kihlstrom 2.370 0.001 1.405 0.096
Ambraseys–Hendron 2.328 0.493 0.855 0.673
ISI 3.213 0.144 1.324 0.223
CMRI predictor 2.318 0.482 0.890 0.621
MLR 2.503 0.384 1.095 0.400
CART 0.524 0.834 1.138 0.744
SVR 1.005 0.90 0.998 0.876
MARS 0.463 0.927 0.227 0.951

For a more convenient comparison and model performance assessment, a Taylor
diagram was established, as shown in Figure 20. From Figure 20, it can be seen that ML
models are the nearest to the reference point. This indicates that these models agree well
with the actual observation [76]. According to the presented result (Figure 20), the MARS
model indisputably agrees best with the observations, as it yielded the lowest centered
root-mean-square difference (RMS) and highest correlation co-efficient. This observation
compared well with the results presented in Table 11, which showed that the proposed
MARS model discloses superior performance in this study. The model can be adopted in
predicting PPV resulting from blasting in opencast mines. A similar method was employed
to compare and assess the best machine-learning model in predicting blast-induced air
overpressure [77].
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Figure 20. Comparison of the proposed model performances using a Taylor diagram.

The MARS model outperformed all other developed models. It is reported that the
performance of a model on unseen data (test data) with respect to the training dataset is an
indicator to evaluate model generalization ability. As shown in Table 11, the performance of
the proposed MARS model on the training set and the testing set do not differ significantly,
and the prediction error (RMSE) was the lowest. This indicates the strong generalization
ability of the MARS model as compared to SVR and CART. Furthermore, the MARS model
provides the interactive behavior between variables. The input variables (basis function
(BFs)) with their corresponding co-efficient from the MARS model led to the general equa-
tion for the prediction of PPV (Table 10). Although the SVR model outperformed the CART
model (Table 11), the latter has the advantage of easy interpretability. The tree generated
by the CART model can be used as a benchmark for the optimization process based on
trial-and-error experimentation. It is worth noting that except for the MARS model, the
accuracy of the proposed models underperformed some models available in the literature
(Table 1). This might be attributed to the high number of input variables and datasets, which
increases the complexity of the models [8]. However, it is reported that many datasets and
input variables enhance the generalization ability of regression models [12]. To the best
knowledge of the authors, there are no existing models involving many blasting events and
input variables as in the case of the present study. It suggests that the proposed models will
better estimate PPV in practical engineering with reasonable accuracy than other existing
models developed with fewer variables and datasets. The proposed model involved only
blast-design parameters, and has the advantage of applying it in areas where rock (mass)
properties are difficult to obtain. However, further investigations should be carried out
involving both blasting parameters and rock (mass) properties with large datasets to ensure
the generalization ability of the models.

5. Conclusions

Ground vibration is one of the inevitable adverse effects induced by rock blasting. Peak
particle velocity (PPV) is the universally used parameter to assess blast-induced damages.
Predicting PPV is the only way to prevent and reduce the damages induced by blasting
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vibration. This study applied machine-learning techniques to develop a generalized and
interpretable model for PPV estimation. CART and MARS, as white-box ML techniques,
have the advantage of easy interpretability and application and were employed in this
study. Furthermore, a black-box SVR algorithm, as well as multiple linear regression and
conventional empirical predictors, were applied and compared to CART and MARS models.
Several conclusions from the presented study can be drawn as follows:

• Based on 1001 datasets, the effective parameters on PPV were assessed using sen-
sitivity analysis. PPV depends upon various blast-design parameters such as hole
diameter, hole depth, number of holes, burden, spacing, stemming length, charge per
hole, total charge, maximum charge per delay, and monitoring distance.

• Machine-learning techniques outperformed traditional prediction techniques includ-
ing empirical and statistical methods and better explain the non-linear interaction
between input variables and the response PPV.

• A comprehensive quantitative interaction between input variables and the response
PPV is obtained from CART and MARS models, and can be easily employed to predict
PPV with reasonable accuracy.

• Despite using many datasets and input variables, the study shows that the MARS
model can be easily employed to estimate PPV with high prediction accuracy (R2 = 0.951;
RMSE = 0.227) compared to CART and SVR.
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Abbreviations

ABS Absorption MCPD Maximum charge per delay

AGPSO
Autonomous groups particles swarm
optimization

MFA Modified firefly algorithm

A–H Ambraseys–Hendron predictors MFA Modified firefly algorithm

ANFIS
Adaptive neuro-fuzzy inference
system

MFO Moth-flame optimization algorithm

ANN Artificial neural network MIV Mean impact value
B Burden ML Machine learning
BCPRA Blast-control point relative angle MLPNN Multilayer perceptrons neural network
BF Basis function MLR Multiple linear regression;

BI Blasting index MPMR
Minimax probability machine
regression

BIGV Blast-induced ground vibration MR Multiple regression;
BK Buckingham π (pi) theorem MVRA Multivariate regression analysis
BP Backpropagation NDS Number of blasting groups
BPNN Backpropagation neural network NH Number of holes
CART Classification and regression tree NHPD Number of holes per delay
CL Average charge length NLMR Non-linear multiple regression
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CMRI
Central Mining Research Institute
predictor

NR Number of rows

CPH Average explosive charge per hole PF Powder factor

CRANFIS
Chaos recurrent adaptive neuro-fuzzy
inference system

PLI Point load index

CSO Cuckoo search optimization PPV Peak particle velocity
D Distance PSO Particle swarm optimization
DPR Delay per row P-wave P-wave velocity
DTS Time delay for each group, R2 Co-efficient of determination

E Young’s modulus RANFIS
Recurrent adaptive neuro-fuzzy
inference system

ELM Extreme learning machine RBFNN Radial basis function neural network
FA Firefly algorithm Rdis Radial distances
FRC Fracture roughness co-efficient RF Random forest
FS Fuzzy system RMR Rock mass rating
GA Genetic algorithm RMSE Root-mean-square error
GCV Generalized cross-validation RQD Rock quality designation
GEP Gene-expression programming S Spacing

GFFN
Generalized feed-forward neural
network

SCA Sine cosine algorithm

G–D
Ghosh–Daemen empirical
predictor

SD Sub-drilling;

GMDH Group method of data handling SL Steaming length
GOA Grasshopper optimization algorithm SRH Schmidt rebound hardness value
GPR Gaussian process regression SVM Support vector machine
GRNN General regression neural network SVR Support vector regression
H Bench height TC Total charge
Hc Hardness co-efficient TS Tunnel cross-section
HD Hole depth UCS Uniaxial compressive strength
Hdis Horizontal distances USBM United states bureau of mines
HDM Hole diameter Ve Volume of extracted block
HGS Hunger games search VOD Velocity of detonation
HHO Harris hawks optimization XGBoost Extreme gradient boosting
ICA Imperialist competitive algorithm ρe Explosive density
IS Indian standard predictor ρr Rock density
L–K Langefors–Kihlstrom predictor ï Porosity
LSSVM Least-squares support vector machine µ Poisson ratio

MARS
Multivariate adaptive regression
splines
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