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E cient materials with good optoelectronic properties are required for the good performance of photovoltaic devices. In this
work, we present �ndings of a theoretical investigation of the structural, electronic, elastic, mechanical, and optical properties of
K2CuX (X�As, Sb) ternary compounds. �e computations were carried out by using the density functional theory (DFT)
formalism as implemented in the quantum espresso (QE) software package. �e calculated lattice constants of 19.1414 a.u
(K2CuAs) and 20.0041 a.u (K2CuSb) are in agreement with the experimental results from the literature.�e materials under study
were found to have bandgaps of 1.050 eV (K2CuAs) and 1.129 eV (K2CuSb). �e valence band was majorly formed by Cu-3d, As-
2p, and Cu-4s states while the conduction band was majorly dominated by Cu-5p in K2CuAs, whereas in K2CuSb, the valence
band was mainly formed by Cu-3d, Cu-4s, and Sb-3p states while the conduction band was majorly formed by Sb-3p and Cu-5p
states. �e investigated materials were found to be mechanically stable at zero pressure, ductile, and ionic. �e optical absorption
coe cient curves were found to cover the ultraviolet to visible (UV-Vis) regions, thus making K2CuAs and K2CuSb good UV-Vis
absorbers hence their suitability for photovoltaic applications.

1. Introduction

Photovoltaic technology depends on various materials for
photon-to-electron conversion, which mainly includes or-
ganic, inorganic, or organic-inorganic blends [1]. �e
contemporary photovoltaic industry is currently dominated
by the inorganic class with high incidence photon-electron
conversion e ciency (IPCE) materials comprising mainly
silicon, gallium arsenide, and cadmium telluride, among
others [1]. �e commercial applicability of these inorganic-
based materials in the photovoltaic industries is, however,
limited by the high costs and level of purity required during
production [2]. Most of these materials, when applied in
photovoltaics, work in the principle of light absorption,
charge separation, and transport of minority carriers, all
happening in the same material [3]. In the recent past,
perovskite material has gained traction due to the rapid
growth in its conversion e ciency from as low as 3% to the

current 25% [4] in a short span of time. Despite their rapid
growth in their e ciency, these types of materials are dogged
by the instability of the photovoltaic systems produced by
using such materials, and this has begged to cast the search
wider [4–7]. �e search for alternative classes of materials
has led to the realization of cheap and abundant ternary
semiconductor compounds [8]. �ese ternary semicon-
ductor compounds have been found to have excellent
electronic as well as optical properties [9]; they also do not
require sophisticated technologies when performing thin
�lm deposition since they work on the principle of majority
carrier transport, where light absorption and charge sepa-
ration take place in the absorber, while charge transport
takes place in other layers of the optoelectronic device [10].
Among the desirable properties of ternary semiconductor
compounds is the considerable wide bandgap range of
1–3 eV [11], which covers the UV-Vis region of the elec-
tromagnetic spectrum. �is property makes these
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compounds promising candidates for application in the
fields of solar cells, lasers, and photodetectors [12].

Among the ternary semiconductor compounds, ternary
compounds adopting the ABC2-type configuration are
most studied due to their wide range of photovoltaic ap-
plications [12]. &e ABC2-type ternary compounds com-
prise chalcogenides with type I-III-VI2 anions and
pnictides with type II-IV-V2 anions [13]. Experimental
studies, as well as theoretical predictions of properties of
the ABC2-type ternary compounds, have been performed
for application in the optoelectronic and photovoltaic
fields. Among the ABC2-type ternary compounds, the
copper-based ternary compounds have been principally
investigated for potential solar cell application [11, 14–18].
Other studies have been carried out on ABC2-type ternary
compounds by replacing the copper element with other
elements. For instance, Khan et al. [19] investigated the
structural, electronic, and optical properties of ternary
CaCN2 compound by using the DFT, where in their de-
duction from the study, the results showed that the
compound had properties that are suitable for utilization in
the photovoltaic applications. Additionally, optical prop-
erties of SrSiP2 and CaSiP2 compounds by using the DFT
approach have been investigated [20]. Elements such as
gold, silver, and aluminum, among others, have also been
investigated as a replacement for copper for potential
optoelectronic and photovoltaic applications [21–42].
Ternary chalcogenides are more promising among the
multinary compounds because the majority possess
properties such as low toxicity semiconductors and tunable
bandgaps allowing improvement of intrinsic properties
[43]. In a study for such compounds performed by Reg-
ulacio Han, a CuInS2 compound was studied for appli-
cation as a light-emitting diode due to its unique properties
for bright light emission and nondegradability on thermal
exposure. In a different study of ABX compounds, the
combination of A �Cu, Ag; B�Zn; and X �Ge, Sn was

found suitable for application in photocatalysis [43]. Ex-
tensive DFT work of similar compounds is available in the
literature, such as ABiX2 and ABiX3 (A �Na, K; X�O, S)
and the references therein [44].

ABC2-type ternary compounds based on potassium el-
ements have been less studied as compared to their copper,
silver, gold, and aluminum analogues [45]. Specifically,
ternary compounds with K-Cu-X (X�N, P, As, Sb, Bi)
formula have been less reported apart from a few exceptions
[46–48]. To the best of our knowledge, there are a few
experimental reports in the literature on the crystal structure
of K-Cu-X (X�As; Sb) [48] hence the motivation for this
study. &e objective of this work is to investigate the
structural, electronic, elastic, mechanical, and optical
properties of K2CuAs and K2CuSb ternary compounds using
the DFT method for potential applications in the photo-
voltaic field.

2. Computational Details

&e structural, electronic, elastic, mechanical, and optical
properties of K2CuAs and K2CuSb ternary compounds
were computed within the DFT [49, 50]. Formalism is
implemented in the QE code [51]. &e K2CuAs and
K2CuSb crystal structure input files were downloaded
from the materials project database [52, 53]. and the
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Figure 1: &e orthorhombic crystal structures of (a) K2CuAs and (b) K2CuSb ternary compounds.

Table 1: Computed atomic bond lengths within the K2CuAs and
K2CuSb crystal structures.

Material Bond Bond distance (a.u)

K2CuAs
As-K 6.4169
As-Cu 4.4996
K-K 7.0447

K2CuSb
Sb-K 6.7652
Sb-Cu 4.8043
K-K 7.6135
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materials cloud input generator implemented in QE was
used to generate the PWscf input files [54] for DFT cal-
culations. &e electron-ion interaction was denoted by
using the projector augmented-wave function (PAW)
method [55]. &e Generalized Gradient Approximation
(GGA) with the Perdew-Burke-Ernzerhof (PBE) [56, 57]
was chosen to define the exchange-correlation effect of the
electrons. &e optimized cutoff energy of 150 Ry and
8 × 8 × 8 Monkhorst-Pack grid for Brillouin zone inte-
gration were used. Geometry optimization was performed
by computing the total energy per unit cell at several
lattice constant values to obtain the ground state struc-
tural properties. Based on the optimized lattice constants,
the elastic, electronic, and optical properties were
calculated.

3. Results and Discussion

3.1. Structural Properties. Both K2CuAs and K2CuSb ternary
compounds adopt an orthorhombic crystal system with the
space group Cmcm as reported elsewhere [48]. &ese crystal
structures have K atoms bonded in 4 coordinate geometries
to 4 equivalent As and Sb atoms, whereas the Cu atoms are
bonded in a linear geometry to 2 equivalent As and Sb atoms
[48], as shown in Figure 1.

From Table 1, the As-Cu bond is stronger than the As-K
bond in K2CuAs, while the Sb-Cu bond is stronger than the
Sb-K bond in K2CuSb. &e K-K bond is the weakest with
long bond lengths; this difference is attributed to the fact that
the volume per atom tends to increase with the increase in
atomic radius and therefore affects crystal lattice basis [13].
&e total energy at various lattice constant values is com-
puted and presented in Figure 2.

&e computed total energy as a function of lattice
constant values was fitted in the Birch ̶Murnaghan
equation of state [58] to get the equilibrium structural
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Figure 2: Total energy versus lattice constants computed for (a) K2CuAs and (b) K2CuSb compounds.

Table 2: Structural properties of K2CuAs and K2CuSb ternary
compounds.

Structural properties K2CuAs K2CuSb

Lattice parameter ao
(a.u)

&is
work

Other
work

&is
work

Other
work

19.1414 18.9351 20.0041 19.8421
Lattice parameter b/a 0.7545 0.7552
Lattice parameter c/a 0.5878 0.5933
Bulk modulus Bo
(GPa) 12.5 10.7

Ground state energy
Eo (ry)

−1296.22 −1629.72

Equilibrium volume
Vo (a.u)3

3506.64 4002.45
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properties. &e computed ground state lattice parameters
in Table 2 are consistent with the ones reported by
Eisenmann et al. [48].

3.2. ElectronicProperties. &e electronic band structures and
projected density of states (PDOSs) of the K2CuAs and
K2CuSb ternary compounds were computed by using the
optimized crystal structures and presented as follows.

&e K2CuAs and K2CuSb compounds have narrow
bandgaps of 1.050 eV and 1.129 eV (see Figures 3(a) and
4(a)), respectively. &e maxima of the valence bands and
the minima of the conduction bands occur at different
symmetry points (Y–Γ) in the Brillouin zone, implying
that K2CuAs and K2CuSb ternary compounds are indi-
rect bandgap semiconductors. &e projected density of
states describes the available states for electrons to oc-
cupy when projected on atomic orbitals. By carrying out
the projected density of states calculation, we can tell
which electronic states (shell (s, p, d, f ) and orbital) for a
particular atom contribute to the formation of the band
edges. Suppose two orbitals lying in the same energy
range hybridize, the value of the projected density of
states increases. In this way, these orbitals are said to
have contributed to the band structure edges. &e orbital

contributions to the formation of valence bands and
conduction bands are described by the PDOS in the
energy region −3.5 eV to 5 eV. As illustrated in
Figure 3(b), the upper valence band in the region −1.4 to
the Fermi level was majorly formed by As-2p and Cu-3d
with a small contribution from the other states while the
middle valence band in the energy region −2.6 eV to
−1.5 eV was majorly formed by Cu-3d with few contri-
butions from the other states. &e lower valence band in
the energy region −3 eV to −3.4 eV was formed mainly by
As-2p, Cu-3d, and Cu-4s, whereas the conduction band
was majorly formed by Cu-5p and As-1s with little
contribution from the other states. In the case of the
K2CuSb compound (Figure 4(b)), the valence band was
majorly formed by the Cu-3d, Sb-3p, and Cu-4s orbitals,
while the conduction band was majorly formed by the
Cu-5p and Sb-3p orbitals.

3.3. Elastic and Mechanical Properties. &e K2CuAs and
K2CuSb ternary compounds adopt an orthorhombic crystal
structure featuring 9 independent elastic constants [59]
given as C11, C12, C13, C22, C23, C33, C44, C55, and C66. &e
necessary and sufficient conditions for elastic stability of the
orthorhombic crystal system [59, 60] are given as
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Figure 3: &e calculated (a) band structure and (b) PDOS of the K2CuAs ternary compound.
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&e computed elastic constants in Table 3 satisfy the
conditions for elastic stability of the orthorhombic system;
thus, the K2CuAs and K2CuSb ternary compounds are
mechanically stable. Other mechanical properties are shown
in Table 4.

Bulk modulus measures the resistance against volume
change resulting from applied external pressure [61]. Large B

5

4

3

2

1

0

–1

–2

–3

En
er

gy
 (e

V
)

Г Y Г B|G Y|Г S R

(a)

PDOS

Ef

K-2S
K-4p
Cu-3d
Cu-4s
Cu-5p

Sb-1d
Sb-2s
Sb-3p
pdos-tot

(b)

Figure 4: &e calculated (a) band structure and (b) PDOS of the K2CuSb ternary compound.

Table 3: Computed elastic constants Cij (GPa) of K2CuAs and K2CuSb compounds.

Compound C11 C12 C13 C22 C23 C33 C44 C55 C66

K2CuAs 45.13 8.23 5.70 38.93 20.15 34.40 22.00 7.09 4.68
K2CuSb 37.27 8.88 4.68 31.96 18.30 27.42 18.75 6.64 3.09

Table 4: Voigt ̶Reuss–Hill approximations of bulk modulus B (GPa), Young’s modulus E (GPa), shear modulus G (GPa), Pugh’s ratio B/G,
and Poisson’s ratio n.

Compound B E G B/G n
K2CuAs 20.59 26.94 10.55 1.95 0.27
K2CuSb 17.56 21.28 8.24 2.13 0.29
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value predicts hard materials; thus, from the computed
values of the bulk modulus, both K2CuAs and K2CuSb are
not hard materials. Additionally, the bond lengths of the
crystal structures are correlated to the size of the B. &e
shorter the bond lengths, the larger the B value [61]. From
the structural properties, the obtained bond lengths in
K2CuAs are shorter than those in the K2CuSb crystal
structure thus the higher value of B in the K2CuAs com-
pound. &e ductile (ionic) and brittle (covalent) nature of
materials is determined by using Pugh’s ratio B/G and
Poisson’s ratio, n [62]. &e restriction for brittleness is B/
G< 1.75; otherwise, the material is said to be ductile [63].

Poisson’s ratio n� 0.1, 0.25, and 0.33 for pure covalent, ionic,
andmetallic bonds, respectively, [64].&us, we can conclude
that K2CuAs and K2CuSb ternary compounds are ductile
and strongly dominated by ionic character. &ese findings
are in agreement with the other reports in the literature for
compounds with similar stoichiometry [47]. &e stiffness of
a material is determined by applying Young’s modulus value
[65]. &e higher the value of E, the stiffer the material [65];
therefore, K2CuAs compound is stiffer than K2CuSb.

3.4. Optical Properties. To explore the prospect of any
material for solar cell and optoelectronic applications, an
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Figure 5: Calculated optical properties of K2CuAs and K2CuSb ternary compounds.
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investigation of the materials’ frequency response of various
optical constants to the incident photon radiation is key [66].
A complex dielectric wave function describes the electron
response in a material [67], and it is described in the form of
an equation as

ε(ω) � ε1(ω) + iε2(ω), (2)

where ε1(ω) and ε2(ω) refer to the real and imaginary parts
of the complex dielectric wave function. All the other optical
constants including the absorption coefficients α (ω), re-
fractive index n (ω), extinction coefficient K(ω), reflectivity R
(ω), and energy loss function L (ω) presented in Figure 5 are
computed by using the equations presented as follows [41],
[63, 68, 69]:

α(ω) �
�
2

√
ω

������������

ε21(ω) + ε22(ω)



− ε1(ω) 
1/2

,
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,
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,
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2
+ K

2

(n + 1)
2

+ K
2 .

(3)

&e imaginary part of the dielectric wave function
describes the photon absorption in crystalline materials
[61]. &e peaks in ε2(ω) curves result from the electronic
transitions from the valence to the conduction bands. &e
absorption onsets in ε2(ω) curves refer to the materials
bandgaps which lie within the visible region, <3.1 eV for
K2CuAs and K2CuSb compounds, an implication of
strong interband transitions. &is makes K2CuAs and
K2CuSb promising candidates for solar cell applications
[41]. Additionally, narrow bandgaps facilitate faster
electron transitions as opposed to wide bandgaps [61]. &e
key feature of the ε1(ω) curve is ε1(Energy � 0), also
referred to as the static value [70]. &is static value is
correlated to the material’s refractive index as
n �

������
(ε1(0))


. Starting from Energy � 0, the ε1(ω) plot

attained major peaks at low energy regions, 1.786 eV and
1.652 eV for K2CuAs and K2CuSb, respectively. &e
photon transmission persisted until the ε1(ω) values be-
came negative at energy regions 5.681–9.173 eV. At this
energy region, the incident photon radiations are assumed
to be fully attenuated [71] and the compounds assert a
metallic behaviour [72]. &e calculated refractive indices
for K2CuAs and K2CuSb were 2.49 and 2.55, respectively.
&e major refractive index peaks reside within the visible
region. &e optical absorption coefficients of K2CuAs and
K2CuSb compounds cover the UV-Vis regions in the

range of 2.82–11.71 eV; this demonstrates that these
compounds can be utilized for photovoltaic applications.
&e materials’ surface behaviour and energy loss by fast
electrons entering a medium are determined by reflec-
tivity and energy loss function, respectively [41]. &e main
peaks of the reflectivity curves were observed in the re-
gions 2.217–5.345 eV. &e reflectivity decreased beyond
this region. &ere was no significant absorption in the
visible regions, as depicted in the loss spectrum.&emajor
absorption peak occurred at higher energy regions
>10 eV. &e optical properties’ results obtained in this
work are in agreement with the results obtained previ-
ously on the related materials [46, 47].

4. Conclusions

In summary, we have studied the structural, electronic,
elastic, mechanical, and optical properties of K2CuAs and
K2CuSb ternary compounds by using the DFT method as
implemented in the QE package. Equilibrium lattice con-
stants of 19.1414 and 20.0041 a.u were obtained for K2CuAs
and K2CuSb, respectively. &e bandgaps obtained were
1.050 eV and 1.129 eV for K2CuAs and K2CuSb, respectively.
&e formation of the valence band was primarily by Cu-3d,
As-2p, and Cu-4s states, while the conduction band was
majorly formed by Cu-5p and As-1s states in K2CuAs
whereas, in K2CuSb, the valence band was majorly formed
by Cu-3d, Cu-4s, and Sb-3p states while the conduction
band was mainly formed by Sb-3p and Cu-5p states. Both
K2CuAs and K2CuSb were found to bemechanically stable at
zero pressure, ductile, and ionic, thus their potentiality for
resilient materials application. &e calculated bandgaps,
high refractive indices, high absorption coefficients, and
wide energy coverage of the absorption coefficients spectra,
mainly in the UV-Vis regions of the electromagnetic
spectrum, make K2CuAs and K2CuSb ternary compounds
suitable for photovoltaic applications.
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