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ABSTRACT
First-principles calculations of the structural, electronic, elastic, mechanical, and optical properties of the K2NiP2 ternary compound using
density functional theory as implemented in the quantum espresso package have been performed. The calculations have been done using the
generalized gradient approximation (GGA) with the Perdew–Burke–Ernzerhof (PBE, PBEsol) exchange-correlation functionals and the local
density approximation (LDA). The lattice parameters have been found to agree with the available experimental results. Direct bandgaps have
been obtained as 0.630, 0.588, and 0.525 eV when using the GGA-PBE, GGA-PBEsol, and LDA approximations, respectively. In all three
scenarios, the valence bands have been noted to be majorly formed by Ni-3d and P-2p states with little contribution from the other states,
whereas the conduction bands have been observed to be mainly formed by P-2p states with a small contribution from the other states. The
K2NiP2 has been found to be mechanically stable, ductile, and ionic. The optical properties showed that the compound under investigation
has a high refractive index and absorption coefficients covering the ultraviolet–visible regions, thus indicating its potential for photovoltaic
applications. The bandgaps obtained using LDA were smaller than those obtained using GGA. This is because LDA underestimates the
bandgaps.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0118809

I. INTRODUCTION

Since the beginning of the industrial age to the present today,
semiconductor materials have played an important role in mak-
ing them some of the most sought-after materials for the last
few decades due to their potential in optoelectronics applications.
The first generation of these materials were unary semiconductors
from Periodic Table groups IVA and VIA, mainly consisting of sil-
icon (Si), germanium (Ge), selenium (Se), and tellurium (Te).1–3

Further combinations to form binary semiconductors, apart from
forming new compound semiconductors, had a tremendous effect
on the properties of the new materials, such as optical, electrical,
structural, and mechanical properties. Examples of such second gen-
eration compound semiconductors are GaAs and CdTe. Improve-
ment in technology and synthesis techniques further enabled the

formation of more complex combinations like the ternary and qua-
ternary semiconductors with more superior properties that can be
engineered for a specific application or fine-tuned to suit different
flavors of the electromagnetic spectrum.4–8

A number of half metallic and semiconductor ABC types
of ternary compounds exist with different types of applications,
such as Heusler alloys, Kesterite, Chalcogenides, and Perovskites.
Over the past decades, ternary semiconductor compounds with the
ABC2-type crystal structure have been extensively investigated
owing to their good electronic and optical properties suitable for
a variety of optoelectronic and photovoltaic applications.9–12 The
ABC2-type ternary compounds are classified into chalcogenides
(AIBIIIC VI

2 ) and pnictides (AIIBIVC V
2 ),10 both of which are made

up of inorganic, non-toxic, and abundant earth elements. These
ABC2-type materials have shown good potential as alternatives
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to the expensive and toxic crystalline Silicon, amorphous Silicon,
copper indium gallium selenide, and cadmium Telluride, among
others, which are currently dominating the optoelectronic and pho-
tovoltaic industries.13 However, the full realization of the potential of
these ABC2-type compounds for diverse technological applications
is not yet achieved. Therefore, researchers are constantly pursuing
further studies on the properties of these materials.

Recently, Lathwal et al.14 investigated the BeSnN2 ternary
compound for optoelectronic applications using the density func-
tional theory (DFT) approach. Yaseen et al.15 studied the electronic,
transport, and optical properties of NaGaX2 (X = S, Se, Te) com-
pounds using DFT for photovoltaic applications. The optoelectronic
and thermoelectric properties of ACuS2(A = Al, Ga, In) have been
investigated16 for potential optoelectronic, thermoelectric, and pho-
tovoltaic applications using a combined Boltzmann transport theory
and DFT. In a recent approximation using the DFT approach,17

CuTiX2 (X = S, Se, and Te) has been found to exhibit good
electronic properties suitable for solar cell applications. Addition-
ally, AlGaX2(X = As, Sb) compounds have been found suitable
for optoelectronic and thermoelectric device applications by using
first-principles calculations based on DFT. Further studies on the
ABC2-type ternary compounds for various technological applica-
tions have been reported.18–25

The ABC2-type ternary compounds (A = IA, B = VIII, C = VA)
based on potassium elements have been less studied. Specifically, the
ternary compounds with the K–Ni–P compositions have been less
reported in the literature apart from a few exceptions.26,27 To the
best of our knowledge, there is only a single experimental report in
the literature on the crystal structure design of the K2NiP2 ternary
compound,27 hence the motivation for this investigation. To fully
realize the potential of the K2NiP2 ternary compound for possi-
ble technological applications, a theoretical investigation is essential.
For this reason, we have investigated the structural, electronic, elas-
tic, mechanical, and optical properties of the K2NiP2 ternary com-
pound using the generalized gradient approximation (GGA) and
the local density approximation (LDA) based on density functional
theory.

II. COMPUTATIONAL METHODS
All the computations were performed using first principle

methods based on DFT.28,29 The calculations were executed using
the projector augmented wave (PAW) potentials30 using the quan-
tum espresso code.31 The electron–ion interaction32,33 was treated
within the generalized gradient approximation, using PBE, PBEsol,
and LDA as the exchange correlation functional.34,35 The local
density approximation and the generalized gradient approximation
pseudopotentials are related mathematically as follows: the local
density approximation is given as

ELDA
xc = ∫ dr⃗n(r⃗)εhom

xc (n(r⃗)), (1)

where εhomxc n(r⃗) is the homogeneous exchange correlation energy
density of the electron gas, while the generalized gradient approx-
imation is given as

EGGA
xc = ∫ dr⃗fn(r⃗) ⋅ ∇n(r⃗), (2)

where∇n(r⃗) are the gradients, whereby there are different flavors of
GGA, each of which takes a different fn(r⃗) function.33,36–38

The K2NiP2 crystal structure input file was downloaded from
the materials project,39–41 and the materials cloud input file gener-
ator implemented in quantum espresso (QE) was used to generate
the Plane Wave self-consistent field (PWscf) input file as well as the
pseudopotentials42 for DFT calculations. We use a plane-wave basis
set with a kinetic energy cutoff of 150 Ry and a Monkhorst–Pack
k-point grid of 9 × 9 × 9 with an offset of 1. Geometry optimization
is performed by computing the total energy per unit cell at various
lattice constant values to obtain the ground state structural prop-
erties. The optimized lattice parameters thus obtained are used for
further computations of electronic, elastic, mechanical, and optical
properties.

III. RESULTS AND DISCUSSION
A. Structural properties

The K2NiP2 crystallizes in the orthorhombic three-dimensional
crystal structure27 as shown in Fig. 1.

The computed K–P bond distance was found to be shorter than
the K–Ni bond distance as presented in Table I. The values com-
puted for the bond distances within the K2NiP2 crystal lattice para-
meters are slightly different from those given in the experimental
results,27 and this is attributed to the fact that the cell volume used
in this work was 249.111 Å3, while the volume in the literature
was 495.3 Å3. The geometry optimization was done by minimizing
the total energy as a function of the unit cell lattice constants as
illustrated in Figs. 2(a)–2(c).

After geometry optimization, the total energy and lattice
constant values were fitted in the Birch–Murnaghan equation of
state43 to obtain the ground-state lattice parameters. The obtained
ground-state lattice parameters as presented in Table II are consis-
tent with the ones reported elsewhere.27

B. Electronic properties
The electronic properties,44,45 including band structure and

projected density of states (PDOS), describe the bandgap, the
direct/indirect nature of the bandgap, the location of the Fermi level,

FIG. 1. Crystal structure of orthorhombic K2NiP2 ternary compound.
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TABLE I. Bond lengths within the K2NiP2 crystal structure.

Bond Bond distance (Å)

K–Ni 3.2639
Ni–P 2.2553

the density of states, as well as the atomic and orbital contributions
to the formation of the valence and conduction bands. The
occurrence of the valence band maxima and conduction band min-
ima at two similar/different symmetry points in the first Brillouin
zone symbolizes the direct/indirect nature of the bandgap.46,47 In
this work, the direct bandgaps of the K2NiP2 semiconductor ternary
compound were obtained as 0.630, 0.588, and 0.525 eV, as shown in
Figs. 3–5, using the GGA-PBE, GGA-PBEsol, and LDA approxima-
tions, respectively. The bandgap obtained using LDA is smaller than
the bandgaps obtained using GGA approximations. This is because
the application of LDA is known to underestimate semiconductor
bandgaps.48

The contribution to the formation of the valence bands in all
the three approximations in the energy regions −3 eV to the Fermi
level was majorly by Ni-3d and P-2p states with little contribution
from the other states, whereas the contribution to the formation
of the conduction bands was majorly by P-2p states with a small
contribution from the other states.

C. Elastic and mechanical properties
K2NiP2 ternary compound crystallizes in the orthorhombic

(Laue class mmm) crystal structure featuring nine independent elas-
tic constants,49 which include C11, C12, C13, C22, C23, C33, C44, C55,
and C66. The necessary and sufficient conditions for elastic stability
of the orthorhombic crystal structure49 are given as

TABLE II. Structural properties of K2NiP2 ternary compound.

Properties GGA-PBE GGA-PBEsol LDA

Lattice parameter ao (Å) 7.657 34 7.510 50 7.372 71
Lattice parameter b/a 1.790 6 1.790 6 1.790 6
Lattice parameter c/a 0.740 3 0.740 3 0.740 3

⎧
⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪
⎩

C11 > 0;C11C22 > C2
12,

C11C22C33 + 2C12C13C23

−C11C2
23 − C22C2

13 − C33C2
12 > 0,

C44 > 0;C55 > 0;C66 > 0.

(3)

The computed values of the elastic constants in Table III satisfy
the conditions in Eq. (1); hence, the K2NiP2 ternary compound is
mechanically stable.

Bulk modulus is a measure of resistance against volume change
as a result of applied external pressure.46 Shear modulus measures
incompressibility,50 while Young’s modulus measures the stiffness
of a material.51 Large B, G, and E predict stronger incompressibility
and stiffness of materials. As presented in Table IV, K2NiP2 is less
stiff and not hard to compress. The ductile/brittle nature of materials
is determined by Pugh’s ratio B/G.52 The restriction for brittleness is
B/G < 1.75; else, the material is said to be ductile. The Poisson’s ratio
n = 0.1, 0.25, and 0.33 for pure covalent, ionic, and metallic bonds,
respectively.53 Therefore, we can conclude that the K2NiP2 ternary
compound affirms a ductile character using GGA-PBE and a brittle
character using (GGA-PBEsol and LDA) approximations. Also, the
compound under study is strongly dominated by the ionic character.
To the best of our understanding, there are no other studies on the
elastic and mechanical properties of the K2NiP2 ternary compound
to compare our findings with.

FIG. 2. Variation of total energy vs lattice
constants of K2NiP2 ternary compound
using the (a) GGA-PBE, (b) GGA-
PBEsol, and (c) LDA approximations.
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FIG. 3. Calculated (a) band structure
and (b) projected density of states of
K2NiP2 ternary compound using the
GGA-PBE approximation.

D. Optical properties
It is needful to investigate the frequency response of various

optical parameters to the incident photon radiation to assess the
prospect of the K2NiP2 ternary compound for photovoltaic appli-
cations. The response of electrons in a material is characterized by
the complex dielectric wave function,54,55 which is described as

ε(ω) = ε1(ω) + iε2(ω). (4)

In this case, ε1(ω) and ε2(ω) denote the real and imaginary
parts of the complex dielectric wave function. From the ε1(ω) and
ε2(ω) values, the refractive index n(ω), absorption coefficients α(ω),
energy loss function L(ω), and reflectivity R(ω) are computed using
the equations reported elsewhere.12,56–58

The electronic properties of crystalline materials are majorly
characterized by ε2(ω), which is linked to the photon absorp-
tion phenomenon.59 The electronic band structures showed direct
bandgaps for the K2NiP2 ternary compound and are consistent with

FIG. 4. Calculated (a) band structure
and (b) projected density of states of
K2NiP2 ternary compound using the
GGA-PBEsol approximation.
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FIG. 5. Calculated (a) band structure
and (b) projected density of states of
K2NiP2 ternary compound using the
LDA approximation.

the optical absorption onsets in ε2(ω) spectra. Peaks in ε2(ω) spectra
result from electronic transitions from the valence to the conduc-
tion bands. The ε2(ω) curves attain their maximum at 5.071, 4.966,
and 4.835 eV for the GGA-PBE, GGA-PBEsol, and LDA approxima-
tions, respectively. Thereafter, the ε2(ω) spectra decreased with an
increase in energy. The fundamental component of the ε1(ω) plot is
ε1(Energy = 0), also denoted as the static point.59 The obtained static
values in Fig. 6(b) are 7.249, 7.426, and 7.653 for the GGA-PBE,
GGA-PBEsol, and LDA approximations, respectively. The square
root of these static values gives the refractive indices of the
K2NiP2 ternary compound. From Energy = 0, the ε1(ω) plot attained
its maximum at 1.219 eV for all three approximations. The photon
transmission continued until the ε1(ω) plot became negative at
energy regions 6.250–11.675 eV. At this point, the incident pho-
ton radiations are presumed to be fully attenuated,60 and the
K2NiP2 ternary compound asserts a metallic behavior.61

The refractive indices of K2NiP2 ternary compounds are shown
in Fig. 6(c). The obtained values are about 2.683, 2.717, and 2.763 for
the GGA-PBE, GGA-PBEsol, and LDA approximations, respec-
tively. The material under investigation is, therefore, suitable for
applications where large refractive indices are fundamentals. The
refractive indices are high in infrared (IR) and visible regions and
then decrease in the higher energy regions. Also, the refractive

indices are inversely related to the bandgaps of the compound under
investigation. The refractive indices are observed to be increasing
as the bandgaps decrease. The absorption coefficient spectra show
the depth of light of specific photon energy that can penetrate
the material before being fully absorbed.62 As shown in Fig. 6(d),
the absorption coefficient spectra grow sharply close to 2.560 eV.
The major peaks appear at 6.884–8.503 eV, and after this energy
region, the spectra undergo drastic decrement. Also, the optical
absorption coefficient spectra of the K2NiP2 ternary compound
cover the ultraviolet-visible (UV–Vis) regions in the range of
2.560–13.862 eV, which imply that it can be utilized for photovoltaic
applications.

TABLE IV. Voigt–Reuss–Hill Approximations of bulk modulus B (GPa), Young’s
modulus E (GPa), Shear modulus G (GPa), Pugh’s ratio B/G, and Poisson’s
ratio, n.

Compound B E G B/G n

PBE 24.91 35.57 14.11 1.77 0.26
PBEsol 20.22 32.63 13.27 1.52 0.23
LDA 16.54 29.56 12.32 1.34 0.20

TABLE III. Computed elastic constants, Cij (GPa), of K2NiP2 ternary compound.

Compound C11 C12 C13 C22 C23 C33 C44 C55 C66

PBE 48.36 15.37 6.26 33.60 23.70 53.30 21.91 9.75 15.61
PBEsol 43.37 10.19 2.16 27.67 19.80 48.49 21.61 8.98 13.60
LDA 40.84 6.75 −1.65 22.96 16.30 44.52 20.79 8.05 11.30
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FIG. 6. (a)–(f) The imaginary dielectric
function, real dielectric function, refrac-
tive index, absorption coefficient, energy
loss function, and reflectivity of K2NiP2
ternary compound using the GGA-PBE,
GGA-PBEsol, and LDA approximations.

The energy loss function describes the energy loss by an
electron passing through the material.58 There was no significant
absorption in the lower energy regions as depicted in the loss
spectrum. The major absorption peaks occurred at 12.015 eV.
Reflectivity is an optical property that describes the optical response
of the surfaces of materials.58 From Fig. 6(f), it is observed that
the reflectivity curve of the K2NiP2 ternary compound reaches its
maximum value at the energy region 5.762–9.308 eV and then
decreases beyond this region. These findings are consistent with the
ones reported for materials with similar stoichiometry.26

E. Conclusion
The structural, electronic, elastic, mechanical, and optical

properties of the K2NiP2 ternary compound have been investi-
gated using density functional theory formalism as implemented in
the quantum espresso code. The calculations have been performed
using the GGA-PBE, GGA-PBEsol, and LDA approximations. The
ground-state lattice constants of 7.657, 7.511, and 7.372 Å have been
obtained using the GGA-PBE, GGA-PBEsol, and LDA approxima-
tions, respectively. Direct bandgaps of 0.630, 0.588, and 0.525 eV
have been observed using the GGA-PBE, GGA-PBEsol, and LDA
approximations respectively. The valence bands are majorly formed
by Ni-3d and P-2p states with little contribution from the other
states, while the conduction bands are majorly formed by P-2p states
with a small contribution from the other states. The compound
under investigation is mechanically stable, ductile, and ionic. The
computed optical properties have shown that the studied compound
has refractive indices of 2.683, 2.717, and 2.763 for the GGA-PBE,
GGA-PBEsol, and LDA approximations, respectively. Additionally,
the studied compound has been found to have absorption coefficient
spectra covering the UV–Vis part of the electromagnetic spectrum
in the energy region 2.560–13.862 eV. We can, therefore, conclude
that the estimated direct bandgaps, high refractive indices, high
absorption coefficients, and wide energy coverage of the absorption

coefficient spectra, mainly in the UV–Vis regions, make the
K2NiP2 ternary compound suitable for chemical coating and
photovoltaic applications.
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