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A B S T R A C T   

This study investigates the utility of using remote sensing and geographic information system techniques to 
accurately infer the presence of radioactive minerals in a typical high background radiation area (HBRA) by 
analyzing spectral signatures of associated soil, rocks and vegetation. To accomplish this, both unsupervised (K- 
Means Clustering) and supervised classification techniques based on a maximum likelihood classifier (MLC) were 
applied to Landsat-8 Imager data from Mrima Hill on Kenya’s south coast. The hill is surrounded by dense 
tropical forest and deeply weathered soils which are rich in Nb, Th, and rare earth elements. Due to high activity 
concentrations of 232Th (>8 times higher than the world average value for soil), the hill has been designated as a 
geogenic HBRA. Based on the underlying geological formations, four classifications of vegetation and two 
classifications of soil/rocks were established and used to indicate the presence of radioactive minerals in the 
area. Measurements of air-absorbed gamma dose-rates in the area were successfully used to validate these 
findings. The application of the MLC method on Landsat satellite data shows that this method can be used as a 
powerful tool to explore and improve radioactive minerals mapping in HBRAs, the overall classification accuracy 
of Landsat8 OLI data using botanical technique is 80% and the Kappa Coefficient is 0.6. The overall classification 
accuracy using soil/rocks spectral signatures is 91% and the Kappa Coefficient is 0.7. Finally, the study 
demonstrated the general utility of remote sensing techniques in radioactive mineral surveys as well as envi
ronmental radiological assessments, particularly in resource-constrained settings.   

1. Introduction 

Carbonatites and alkaline intrusive complexes are examples of high 
background radiation areas (HBRAs). This is due to the abundance of 
rare earth elements (REEs) and heavy elements such as Nb, Zr, and Mn, 
which are often associated with thorium and uranium -bearing minerals 
like monazite and pyrochlore (Verplanck and Gosen, 2011). Because 
these minerals contain anomalous concentrations of natural radionu
clides, mining waste generated during mineral processing activities can 
be highly radioactive, posing a risk to human health and environment. 
Geophysical techniques such as radiometric, magnetic, and gravity have 
been widely used to analyze such intrusions (Killeen et al., 2015; 
Thomas et al., 2016), but due to the large number of samples required 
for analysis, they are time consuming and expensive, making them un
suitable for laboratories with limited resources. Remote sensing tech
niques, on the other hand, are preferred in geological applications 
(Rajesh, 2004; Rokos et al., 2000) due to their low cost and ability to 
access difficult terrains and landforms (e.g., mountainous and forest 
terrains). Furthermore, large-scale data collection may be done quickly 

and at regular intervals (Rajan Girija and Mayappan, 2019; Samanga, 
2021). 

Although both the hyperspectral (HS) and multispectral (MS) sensors 
are employed in mineral mapping, HS are more sensitive to variations in 
reflected energy than MS due to their superior spectral resolution and 
offer a greater potential for identifying a range of minerals. Previous 
studies (Boesche et al., 2015; Neave et al., 2016; Turner et al., 2014) 
have widely and successfully used HS data to map REE-bearing minerals. 
ASTER and Landsat are the most widely used MS data for mineral 
mapping, but due to their low spectral resolution, they are rarely used in 
the mapping of REE-bearing and radioactive minerals (Rowan and Mars, 
2003). Nonetheless, MS sensors are useful, particularly in exposed 
bedrock areas (Leverington and Moon, 2012). As a result, the Landsat 
Thematic Mapper (TM) and Landsat Enhanced Thematic Mapper Plus 
(ETM+) satellites have been used to differentiate between different li
thologies (Amer et al., 2012; Crosta et al., 2003; Ramadan and El Leithy, 
2005). 

Several methodologies have been used to analyze MS data, including 
principal component analysis (PCA) (Yang et al., 2008), band ratios 
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Fig. 1. (a) Reflectance of vegetation (Maple leaves) and mineral (Kaolinite) and filter response of Landsat OLI bands, and (b) Reflectance of rock (Desert Vanish) and 
soil (Sand). 
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(Rowan and Mars, 2003), relative absorption band depth (Crowley et al., 
1989), mineral indices (Abrams and Yamaguchi, 2019), as well as 
spectral analysis (Pacheco and McNairn, 2010). Band ratios have been 
employed to investigate spectral differences between bands and to 
reduce topographic effects. Despite the improvement in image contrast, 
its weakness is demonstrated by the reduction in the reflection intensity 
of objects on the images. Also, there could be more than one mineral 
candidate for the same band ratio e.g. Landsat band ratio of 4/2 and 4/1 
both used for discriminating iron minerals and ferrous minerals. 
Furthermore, although the PCA technique helps in identifying minerals, 
it is not definitive in discriminating or naming the various possible 
minerals which may constitute the brighter color exhibited by a 
particular group of pixels at a specific location on the image. 

The maximum likelihood classification method, on the other hand, is 
widely used and can be regarded as one of the most reliable techniques 
for feature identification in remote sensing. For this reason we propose 
to use it in this work. It is a parametric statistical method in which the 
analyst supervises the classification by identifying representative areas 
known as training zones. These zones are then described numerically 
and presented to the computer algorithm, which classifies the pixels of 
the entire scene into the respective spectral class that appears to be most 
alike. It is assumed that the training data distribution is Gaussian (nor
mally distributed). The probability density functions are used to classify 
a pixel by computing the likelihood of the pixel belonging to each class. 
During classification all unclassified pixels are assigned class member
ship based on the relative likelihood of the pixel occurring within each 
class probability density function (Lillesand et al., 2015). It is therefore, 
a statistical decision criterion to assist in the classification of over
lapping signatures; pixels are assigned to the class of highest probability. 

To validate their findings, most studies that use remote sensing 

techniques to map radioactive minerals have relied primarily on field 
samples and laboratory analysis techniques (Manuel et al., 2017; 
Mohamed et al., 2021; Muavhi et al., 2021; Ramadan et al., 2013; Shi 
et al., 2020). These usually necessitate extensive planning as well as 
deployment of manpower and resources on the ground thus limiting the 
number of samples collected. Airborne radiometric measurements 
(Baranwal and Rønning, 2020) would be the most cost-effective 
approach for large-scale surveys, but the systems are expensive and 
not available in most laboratories. GPS equipped detectors for vehicular 
and mobile backpack γ-ray spectrometry (Aage et al., 2006; Kaniu et al., 
2018a) can be useful for laboratories with limited resources in the 
establishment of baseline radiological maps that include a spatially 
representative dataset for validation. In this paper, we investigate the 
feasibility of remote sensing techniques in mapping radioactive minerals 
in a typical HBRA. We show how the maximum likelihood supervised 
classification technique can be used to map soil/rocks and vegetation 
species associated with radioactive minerals based on their spectral 
response to electromagnetic radiation. We also demonstrate how in-situ 
air absorbed gamma dose rate measurements can be used to validate the 
classified data. 

2. Interactions of electromagnetic radiation with vegetation, 
rocks, soil and minerals 

Rocks are mineral aggregations that contain a wide range of mole
cules and elements such as silicon, aluminum, iron and calcium. The 
spectral reflectance of various minerals can thus be used to identify 
minerals and consequently rocks using remotely sensed data (Mather 
and Koch, 2010). For example, spectral band rationing enhances 
compositional information while suppressing other types of information 

Fig. 2. (a) Satellite imagery of the study area (source: Google Earth) and (b) Map indicating geology of the study area (Adapted from: JICA, 1993).  
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about earth’s surface. Fig. 1 shows the spectral reflectance curves of 
some common vegetation (Maple), mineral (Kaolinite), rock (Desert 
Vanish) and soil (Sand) found on the earth’s surface and filter response 
of Landsat 8 OLI bands. 

This method is very useful for highlighting certain features or ma
terials that cannot be seen in the raw bands. The ratio of bands 4 and 5 is 
useful for vegetation mapping by using the Normalized Difference 
Vegetation Index (NDVI). Band ratio transformation is useful for quali
tative detection of hydrothermal alteration minerals (Di Tommaso. 
2007; Rockwell et al. 2008; Pour and Hashim. 2011). The ratio 4/2 is 
useful for mapping iron oxides because it has absorption in the blue 
region, while it has a high reflectance in the red region. The ratio 6/7 
can be used to map kaolinite, montmorillonite and clay minerals. All 
these features have a high reflectance in band 6 and low reflectance in 
band 7 of Landsat 8 image. The ratio 6/5 is useful in mapping ferrous 
minerals due to the high reflectance of these minerals in these bands. 
Two combinations of RGB images can been used for lithological map
ping and hydrothermal alteration zones i.e., the ratios 4/2, 6/7 and band 
6/5 as RGB and 4/2, 6/5 and 6/7 as RGB (Sabins, 1999). Identification 
of iron oxides can be implemented using bands 2 and 4 while mapping of 
clay and carbonate minerals is carried out using bands 6 and 7 of 
Landsat-8. Band ratios derived from image spectra (4/2, 6/7, 5/4 in 
RGB) are useful in the identification of rock units alteration. 

3. Materials and methods 

3.1. Description of the study area 

Mrima Hill is located on Kenya’s south coast, around 80 km south- 
west of harbor city of Mombasa. The area is defined between latitudes 
4◦ 27 and 4◦ 30 and longitudes 39◦ 13 and 39◦ 18. The hill is dome- 
shaped and is covered by a dense tropical forest (see Fig. 2(a)). It rises 
roughly 300 m above sea level and covers an area of around 3.8 km2. The 
presence of Dovyalis keniensis, an 18-species genus that includes Aspar
agus sp, as well as plants such as sagebrush, pynon pine and mormon tea 
vegetation all of which are used in depicting radioactive materials, has 
been previously recorded in the area (Gillman, 1949; Sleumer et al., 
1975). In addition, the hill is a carbonatite plug of Jombo’s alkaline 
igneous complex (Baker, 1953; JICA, 1993), and it contains Duruma 
deposits as well as alkaline, igneous, and sedimentary rocks (see Fig. 2 
(b)). Fe, Mn, and REEs as well as U and Th-bearing minerals are also 
abundant in the area. Recently, Kaniu et al. (2018a, 2018b) found that 
the air absorbed gamma dose-rates in the area ranged from 60 to 2368 
nGy h− 1, with the higher dose-rates (>600 nGy h− 1) in the hill crest 
correlating with elevated 232Th activity concentrations. 

Fig. 3. Raw Landsat-8 (Path 166/Row 63) of the study area acquired on 30th March 2016, 07:31:17.  
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3.2. Remote sensing data 

Landsat-8 (Path 166/Row 63) operational land imager (OLI) and 
thermal infrared sensor (TIRS) data were downloaded in a digital format 
with 16-bit pixel values characteristics from the United States Geological 
Survey (USGS) website on March 30, 2016. There are a total of 11 bands. 
Bands 2, 3, 4, 5, 6, and 7 were processed and merged with a 30 m res
olution. The technological parameters of Landsat-8 remote sensing 
sensors are as described by Dev Acharya et al., (2015). The satellite data 
resolution, path/row, and acquisition date are all as shown in Fig. 3. The 
scene was cloud-free and georeferenced to the WGS-84 datum using the 
UTM zone 36 south projections. 

3.3. Satellite image preprocessing 

Satellite sensor data typically contains unique radiometric and geo
metric errors, necessitating rectification. Due to differences in scene 
illumination and viewing geometry, atmospheric correction, and sensor 
noise, radiometric correction will be required. For atmospheric adjust
ments, the relative normalization and absolute normalization (Adelman- 
McCarthy et al., 2006) as well as absolute rectification (Chavez, 1996; 
Song and Woodcock, 2003) methods are used. Fast Line-of-sight At
mospheric Analysis of Hypercubes (FLAASH) module in ENVI software 
was used in this study to alter the atmosphere using an atmospheric code 
based on MODTRAN 4 radiative transfer. 

The interpretation of multi spectral remote sensing images for 
geological purposes is hampered by vegetation cover, particularly in 
highly covered landscapes. To increase the underlying geological in
formation in such terrains, it is preferable to lower the reflectance 
component of vegetation. The vegetation reflectance component in the 
research area was suppressed using the forced invariance approach (Yu 
et al., 2011). The procedure is divided into three steps, as follows: (1) the 
suppression of sparsely vegetated or non-vegetated areas using 
Normalized Difference Vegetation Index (NDVI); (ii) the combination of 
the vegetated and non-vegetated areas followed by histogram equal
ization to eliminate color saturation differences; and (iii) the use of 
forced invariance technique in subtracting the spectral response in 
relation to vegetation. NDVI was utilized in this investigation, given by 
(near-infrared -red)/(near-infrared + red) and has values ranging from 
− 1 to 1. The non-vegetated areas were retained by concealing the areas 
with NDVI less than 0.25. Non-vegetated portions were separated and 
masked before being added using maskings-adding technique. 

3.4. Image classification 

To capture the spectral variability of the study area, we used an 
unsupervised classification procedure [(ENVI version 5.3) (K-Means 
Clustering algorithm)] on a 2016 Landsat OLI scene of the study area (30 
March, centred on Path 166 and Row 63) to identify 4 and 2 spectral 
classes for vegetation and soil/rocks, respectively. In K-Means clus
tering: 1. a set number of cluster centres are positioned randomly 
through the spectral space; 2. pixels are assigned to their nearest cluster; 
3. the mean location is re-calculated for each cluster; 4. Steps 2 and 3 
repeated until movement of cluster centres is below threshold and then 
assign class types to spectral clusters. Use of additional classes might 
have captured more of the spectral variability in the image; however, we 
believed that the 4 and 2 classes sampled a reasonable spectral range 
according to the existing knowledge of the study area. 

We then used a supervised (MLC) method to classify satellite images 
into vegetation and soil/rocks. Assumptions of supervised methods are 
that (1) a continuum of ground characteristics (e.g., present ground 
cover of vegetation and soil/rocks) meaningful to the study can be 
divided into discrete categories (e.g, vegetation and soil/rock classes), 
and (2) those categories can be mapped from satellite data. Supervised 
classification needs the background knowledge of study area obtained 
by external sources or field work. The training fields are used to train the 

computer in recognizing different categories. The selection of training 
fields is based on optical properties of each category, field observations 
at known locations, and ariel and ground photographs. When the 
interpreter enters a single pixel, the algorithm adds up the neighbor 
pixels with identical pixel values to the one that was initially entered. 

We do emphasize mapping of radioactive minerals by inferring to 
vegetation and soil/rocks spectral classes and air absorbed gamma dose- 
rates relationships in our research and not by specific vegetation or 
rock/soil species. This is due to limited plant/rock/soil species and 
hyperspectral data of the study area. We therefore, developed a classi
fication to reflect vegetation and soil/rock classes that are correlated 
with dose-rates, abundance, and distribution. 

We used a per-pixel approach in this study. Vegetation and soil rock 
sampling and classification were scaled relative to an OLI pixel size, and 
image classification and accuracy assessment were conducted on a per- 
pixel basis. 

The soil/rocks and vegetation were classified into different classes 
based on the spectral distance between the closest pixels. The remote 
sensing image of the study area was classified using the Region of In
terest (ROI) of the spectral signatures of the vegetation, soil/rocks types 
available in the ENVI 5.3 software spectral library database. For best 
input, the ENVI interface module’s high probability threshold for each 
class was set at 0.9 for soil/rocks and 0.8 for vegetation species identi
fied in the study area. To obtain the best results, the probabilities were 
estimated by altering the input values between 0.1 and 1.0. 

3.5. Validation of classification data 

Air absorbed gamma dose-rate measurements in the study area were 
obtained in 2014 and 2019 with a portable PGIS-2 in-situ -ray spec
trometer and the Safecast bGeigie Nano radiation detector, respectively. 

Fig. 4. Schematic representation of overall analysis steps for mapping radio
active minerals. 
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The techniques employed, as well as a thorough description of how these 
measurements were collected, can be found elsewhere (Kaniu et al., 
2018a, 2019). These measurements were used to validate the maximum 
likelihood classification data. The Surfer13 (Golden Software, LLC) 
software was used to superimpose the geo-referenced radiometric data 
on the classification data. To quantitatively evaluate the accuracy of the 
classification data, a pixel-by-pixel comparison was used to calculate a 

confusion matrix about the agreement between the classified results and 
the dose-rate measurements. The overall steps involved in mapping the 
radioactive materials in the study area can be summarized using the six 
steps described in Fig. 4. 

Fig. 5. Maximum likelihood classification of (a) vegetation species in Mrima Hill and (b) soil/rocks in the Mrima Hill environs.  
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4. Results and discussion 

4.1. Image classification 

Because Mrima Hill is covered by dense forest and thick undergrowth 
(see in Fig. 2(a)), no soil/rock signatures were obtained. Instead, by 
evaluating the spectral signatures of associated vegetation, the botanical 
technique was utilized to infer the existence of radioactive materials in 
the area. The vegetation species were classified into Class 1, Class 2, 
Class 3 and Class 4 by the use of maximum likelihood classifier, see Fig. 5 
(a). It was found that the hill summit has more signatures than the 
surrounding areas. Class 1 vegetation species are more concentrated on 

the hill peaks than Class 2 vegetation species, which are more concen
trated on the upper slopes. Class 3 vegetation species are concentrated 
on the lower slopes around the hill whereas Class 4 vegetation species 
are sparsely distributed about 0.5–3 km away from the hill. It was also 
noted that the population of Class 3 vegetation species is lower than the 
other species. Fig. 5(b) shows that the two types of soil/rocks in the areas 
surrounding Mrima Hill had a high probability of being classified 
because the area is not covered by vegetation. The distribution of Class 1 
soil/rocks is concentrated in the north-west areas and around the hill, 
whereas Class 2 soil/rocks are mostly found in the eastern and southern 
part of the Mrima environs. 

4.2. Validation of the classification results 

Table 1 summarizes the binning method used, as well as statistics for 
the gamma dose-rate absorbed by the air measurements used to validate 
the maximum likelihood classification results. In general, measurements 
in both Mrima Hill (>90%) and Mrima Environs (>82%) are 3.6–66.2 
and 1.3–16.1 times, respectively higher than the population-weighted 
world average external background radiation rate of 60 nGy h− 1 

(UNSCEAR, 2000). The background values for both Mrima Hill and the 
environs were estimated as 651 ± 436 nGy h− 1 and 223 ± 144 nGy h− 1, 
respectively. 

The comparison of Mrima Hill classification data with air absorbed 
dose-rates (Fig. 6) shows that most of the above background dose-rates 
(hotspots), i.e. >1018 nGy h− 1 can be associated with Class 1 vegetation 
(see grids F2, G1, G2 and H3). Background dose-rates i.e. 215–1018 nGy 
h− 1 can be associated mostly with Class 2 and Class 3 vegetation (see 
grids E4, F4, G4 and H2). Class 4 vegetation can be associated with 
below background dose-rates i.e. 41–215 nGy h− 1 (see grids A1, A2, A3, 
D3 and D4). Table 2 shows the confusion matrix derived from the 

Table 1 
Binning scheme for air absorbed gamma dose-rates in the study area.  

Area Dose rate 
range (nGy 
h¡1) 

% Description 

Mrima Hill 
No. 
measurements: 
17,452 
Background: 
651 ± 436 nGy h− 1 

41–215 
215–1087 
1087–3971 

10 
77 
13 

Below the Mrima Hill 
background value 
Within the Mrima Hill 
background value 
Higher than the Mrima Hill 
background value (gamma 
radiation hotspots)  

Mrima Hill 
environs 
No. 
measurements: 
3922 
Background: 
223 ± 144 nGy h− 1  

40–79 
79–367 
367–967   

18 
68 
14  

Below the Mrima Hill environs 
background value 
Within the Mrima Hill environs 
background value 
Higher than the Mrima Hill 
environs background value 
(gamma radiation hotspots)  

Fig. 6. Maximum likelihood classified data for Mrima Hill overlaid with air-absorbed gamma dose-rates.  
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classified data and the air absorbed gamma dose-rate measurements in 
the indicated grids (Fig. 6). It was found that the overall classification 
accuracy is 80% and the kappa coefficient is 0.6. 

Mrima Hill and its environs cover a total area of ≈ 29 km2, and due to 
the limited resources and man-power, only a few areas of the environs 
were accessed during the radiological surveys. Despite this, there were 
enough measurement points to compare to the maximum likelihood 
classification data (see Fig. 7). It was observed that Class 1 soil/rocks 
were found to correspond with background dose-rates measurements 
and hotspots i.e. >79–967 nGy h− 1), see for example grids A1, A4, C2, 
D3 and D. Class 2 soil/rocks can be associated with both below back
ground and background dose rate measurements, i.e. 41–<367 nGy 
h− 1); see for example grids A6, A7, A8, A9, G1, G5 and H1. Table 3 
shows the confusion matrix derived from the classified data and the air 
absorbed gamma dose-rate measurements in the indicated grids (Fig. 7). 
It was found that the overall classification accuracy is 91% and the 

Table 2 
Confusion matrix between maximum likelihood classification and air absorbed gamma dose-rates in Mrima Hill.  

Item Training data 

Class 1 
(719–3658 nGy h¡1) 

Class 2 
(375–679 nGy h¡1) 

Class 3 
(284–363 nGy h¡1) 

Class 4 
(77–154 nGy h¡1) 

Total 

Maximum likelihood classification results Class 1 
(719–3658 nGy h− 1) 

160 35 – – 195 

Class 2 
(375–679 nGy h− 1) 

14 68 – – 82 

Class 3 
(284–363 nGy h− 1) 

10 4 4 – 18 

Class 4 
(77–154 nGy h− 1) 

– – 1 18 19 

Total 184 107 5 18 314 
Overall accuracy 

Kappa coefficient 
80% 
0.62   

Fig. 7. Maximum likelihood classified data for Mrima Hill environs overlaid with air-absorbed gamma dose-rates.  

Table 3 
Confusion matrix between maximum likelihood classification and air absorbed 
gamma dose-rates in the Mrima Hill environs.  

Item Training data 

Class 1 
(162–686 nGy 
h¡1) 

Class 2 
(92–131 nGy 
h¡1) 

Total 

Classification 
results 

Class 1 
(162–686 nGy 
h− 1) 

103 34 137 

Class 2 (92–131 
nGy h− 1) 

33 632 665 

Total 136 666 802 
Overall accuracy, Kappa coefficient: 91%, 0.7   
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kappa coefficient is 0.7. 

4.3. Discussion 

The dominance of Classes 1 and 2 vegetation in Mrima Hill (Fig. 6) 
confirms that the area’s laterite, which is rich in iron and manganese 
(Baker, 1953), contains high radioactive mineral content. This obser
vation is supported by the gamma dose-rate measurements, which show 
that the measured dose-rates are highest at the hill peaks and southern 
hill slopes. The variation in vegetation species between Classes 1 and 2 
could thus be attributed primarily to the area’s underlying geological 

formations (see Fig. 2(b)). This is because the minerals and nutrients 
(taken up by the vegetation) that predominate in the soil are determined 
by the parent rock (Burghelea et al., 2015). The few pixels observed for 
Class 3 vegetation in the foot slopes of the hill could be indication that 
the species is fading away, perhaps due to human encroachment as the 
area lies outside the Mrima Hill forest reserve. In the Mrima hill envi
rons, the distribution of the two classes of soil/rocks (Fig. 7) could be 
directly attributed to the soil and rock formations around the hill, 
namely sands and sandstones/shales/siltstones (see Fig. 2(b)). Class 1 
soil/rocks (sandstones/shales/siltstones) therefore have higher radio
active mineral content compared to Class 2 soil/rocks (sands) which is 
consistent with observations made by Kaniu (2017). 

The overall accuracy shows that 80% and 91% of all the pixels under 
assessment in Mrima Hill and the environs, respectively were correctly 
classified. On this basis, a projection of the air absorbed gamma dose- 
rates in areas where no radiometric measurements were previously 
taken but where spectral signatures of vegetation and soil/rocks were 
recorded is given (see Table 4). Furthermore, using the botanical 
method to assess spectral signatures of vegetation in the larger alkaline 
igneous complex of Jombo (Baker, 1953), it is shown in Fig. 8 that, in 
addition to Mrima Hill, Jombo Hill and Marenji forest have a high 
concentration of Class 1 and Class 2 vegetation species. This implies that 
the areas associated with these species are likely to contain radioactive 
minerals as well as high background radiation (i.e. >375 nGy h− 1), and 
that future mineral exploration and associated radiological monitoring 
activities would prioritize these areas. 

Table 4 
Projected air absorbed gamma dose-rates based on maximum likelihood classi
fication data.  

Fig/Grid No. Maximum Likelihood 
Classification 

Projected gamma dose-rates 
(nGy h− 1) 

Fig. 6: E1, F1 
Fig. 6: E3, H4, H5, 
H1 
Fig. 6: H1, G5 
Fig. 6: B1, B2, C1, 
C2, H6 

Class 1 (vegetation) 
Class 2 (vegetation) 
Class 3 (vegetation) 
Class 4 (vegetation) 

719–3658 
375–679 
284–363 
77–154 

Fig. 7: A2, A5, B1, 
D2, E2 
Fig. 7: B5, B6, B7, 
E1, E5 

Class 1 (soil/rocks) 
Class 2 (soil/rocks) 

162–686 
92–131  

Fig. 8. Maximum likelihood classification of vegetation in the alkaline-igneous complex of Jombo that is associated with radioactive minerals.  
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5. Conclusion and recommendations 

This study investigated the feasibility of using satellite data to 
identify and map radioactive minerals in an area with high background 
radiation levels, specifically Mrima Hill and its environs on Kenya’s 
south coast. Image interpretation of Landsat 8 OLI datasets was used to 
identify spectral signatures of soil/rocks and vegetation associated with 
radioactive minerals. The maximum likelihood classification technique 
was found to be effective in mapping radioactive minerals after it was 
validated using air absorbed gamma dose-rate measurements in the 
area. Consequently, this method is recommended for mapping radio
active minerals and supporting environmental radiation measurements 
in high background radiation areas, particularly in remote areas with 
restricted access and resources. Use of high-resolution spectral and 
spatial remote sensing data is also recommended. 
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