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Abstract: Agriculture is essential to a flourishing economy. Although soil is essential for sustainable
food production, its quality can decline as cultivation becomes more intensive and demand increases.
The importance of healthy soil cannot be overstated, as a lack of nutrients can significantly lower crop
yield. Smart soil prediction and digital soil mapping offer accurate data on soil nutrient distribution
needed for precision agriculture. Machine learning techniques are now driving intelligent soil
prediction systems. This article provides a comprehensive analysis of the use of machine learning
in predicting soil qualities. The components and qualities of soil, the prediction of soil parameters,
the existing soil dataset, the soil map, the effect of soil nutrients on crop growth, as well as the soil
information system, are the key subjects under inquiry. Smart agriculture, as exemplified by this
study, can improve food quality and productivity.

Keywords: machine learning; digital soil mapping; soil properties, smart soil

1. Introduction

Without a doubt, technological advancements have dramatically improved the effi-
ciency and productivity of numerous industries, including agriculture. Examples of this
revolution in technology include the introduction of such terms as “big data”, “data analyt-
ics”, “artificial intelligence”, “Internet of Things”, “erosion modeling”, “smart farming”,
and “machine learning” [1–4]. To develop and populate spatial soil information systems,
digital soil mapping (DSM) applies numerical models to infer the geographical and tempo-
ral variations of soil types and attributes based on soil observations, prior knowledge, and
pertinent environmental variables [5].

Even though the above ideas have been utilized in many ways, agriculture technology
is continually evolving. Fertilizer and weed application, irrigation management, and
soil mapping all involve information technology. AI models are becoming increasingly
crucial to smart agriculture’s long-term success. In agriculture, AI is used in soil and
irrigation management, weather forecasting, plant growth, disease prediction, and animal
management [6]. Smart farming, in contrast to traditional farming, makes use of state-
of-the-art innovations to boost productivity and reduce labour stress in response to the
exponential growth and development of data processing, information technology, and
artificial intelligence, automating soil and crop management with AI that mimics the way
humans learn and solve problems [7].

Artificial intelligence (AI) applied to soil prediction is vital in agriculture since soil
composition impacts crop yields in many ways. Soil prediction involves using several
methods to evaluate if the soil is suitable for a crop before planting it. Smart soil prediction
is a result of new technology. Smart soil prediction is a low-cost way to anticipate a soil’s
performance across many crops. Digital soil mapping (DSM) creates digital soil type and
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quality maps using numerical and statistical models that combine soil sensing data with
environmental parameters [8]. Recent years have seen a dramatic increase in DSM activi-
ties within the field of soil science, which can be attributed to the comingling of several
ideal elements, including, but not limited to, massive interest in quantitative and spatial
soil information, the accumulation of databases of estimated or construed soil properties
combined with thoroughly known environmental variables, and the development of nu-
merical models combined with computer resources to mine these stores of soil data [9].
For supplying the crop model soil input data, DSM can be used instead of choropleth soil
maps. For mapping soil parameters at controlled prices, the DSM provides an alternative
to traditional soil surveys [10]. Acquiring precise soil nutrient distribution data is a crucial
step in the implementation of precision agriculture, and digital soil mapping is a promising
innovation [11]. Several artificial intelligence tools, such as fuzzy systems, decision trees,
expert knowledge, machine learning algorithms, deep learning methods, and others, can
offer more precise forecasts and solutions in DSM. As shown in Figure 1, there are four
major processes for evaluating model and map performance in DSM. The first step is to
train the model with the dataset (to ensure goodness of fit), the second step is to test the
model performance with cross-validation (to ensure robustness), the third step is to test
the map validation within a similar geographic degree with an independent dataset, and
the fourth step is to test the model’s adaptability in an alternate geographic region with a
second independent dataset [12].

Figure 1. Conceptual View of Assessing Model and Map Performance in DSM [12].

Artificial intelligence models and digital soil mapping have been used in the past to
predict soil fertility, providing a decision-making tool capable of predicting the most suited
crops to plant based on soil pH, soil nutrients, soil moisture, environmental variables, and
other factors [13]. For precision farming, machine learning and deep learning algorithms
are the most frequently used types of artificial intelligence [14]. The lack of widespread
adoption of digital soil mapping and other digital innovative solutions is a barrier to high
productivity in agricultural systems in developing countries, despite the fact that its use
has been on the rise internationally. As a result, the primary objective of this research is to
investigate the issues that are impeding the deployment of smart soil information systems
in developing nations. Furthermore, this study elaborates on numerous examples of digital
soil mapping and artificial intelligence-based smart soil systems with emphases on the
following contributions:

1. Examining the smart agriculture and digital soil management landscape in developing
countries.

2. Existing research literature on soil attributes, classifications, and key components in
soil databases for soil fertility prediction.

3. Identify and review the state-of-the-art smart soil system based on artificial intelli-
gence models (machine learning and deep learning models).

4. Overview of the current issues in development and deployment of soil information
systems.



Big Data Cogn. Comput. 2023, 7, 113 3 of 25

5. Establishing a roadmap for future research to improve agricultural productivity with
DSM and other digital innovation technologies through the development of a smart
soil information system.

The remaining sections of this systematic review are organized as follows. Section 2
examines soil components and qualities, while Section 3 focuses on the use of digital soil
mapping and intelligent soil management systems. Section 4 describes the materials and
methods employed in this study. Section 5 discusses existing soil information system
frameworks, current trends in soil information systems, and problems. Section 6 examines
the current state of AI models for soil property management and soil fertility prediction;
machine learning and deep learning algorithm applications and accuracy; and existing
smart soil mobile applications. Section 7 presents the research findings and discussion.
Section 8 provides the conclusion and future research directions.

2. Soil Components and Properties

Sustainable agricultural growth and enhanced crop yields are both feasible conse-
quences of land reclamation and productive resource management. Increased yields can
be obtained in intensive cropping by using adequate nutrition sources and application
rates [15]. Soil quality fundamentally means “the ability of a soil to function”; this ability
can be indicated by the estimated soil’s physical, chemical, and biological qualities, often
known as soil quality indicators (SQI) [16]. Several soil investigations may be envisaged
to adequately quantify the soil framework, and science-based indices on SQI provide
valuable data to farm managers for decision making. These indices incorporate important
soil attributes, including supplying suitable amounts of water and nutrients, resisting
and recovering from physical degradation, and supporting plant growth with the right
management [17]. Sustainable farmland management requires an in-depth familiarity with
the relationships between soil physical qualities and many agronomic and environmental
factors [18]. The availability of nutrients is influenced by the soil’s chemical and physical
properties, such as its parent material and naturally occurring minerals, organic matter,
depth to bedrock, sand, or gravel, permeability, water-holding capacity, and drainage. The
distribution of nutrients is also determined by plant and atmospheric conditions [19]. The
nutrient concentration in the soil solution is influenced by soil water content, depth, pH,
cation-exchange capacity, redox potential, soil organic matter, microbial activity, season,
and fertilizer application [20]. It is typically time-consuming and costly to estimate and
evaluate soil components and qualities. Predictive soil mapping is a common modeling
approach used to estimate the spatial distribution of soil components when actual data
from samples are unavailable. Many of these approaches rely on predictive maps or the
estimation of soil-related variables at unmeasured locations based on field data using
mathematical or statistical models of relationships between soil and other environmental
elements [21].

2.1. Soil Dataset

To determine the nutrient level, composition, and other properties of a soil sample,
scientists conduct a soil test. Soil testing can involve a variety of techniques and fertilizer
recommendations to determine the soil’s fertility and pinpoint any deficiencies that need
to be addressed. Soil analysis provides information useful to farmers and consumers in
deciding when and how much fertilizer and farmyard manure should be administered
during a crop’s growth cycle [22]. Soil datasets entail information on land suitability for
agricultural production, soil maturity, soil texture, meteorological data, moisture content,
soil classes, soil colour, covariate data, soil nutrients, and trace elements. Table 1 lists the
most prevalent soil nutrients, trace elements, and their descriptions.

The utilisation of covariate environmental data facilitates the establishment of asso-
ciations between soil properties and various environmental factors. The process of soil
formation and its characteristics are impacted by several factors, including but not limited
to climatic conditions, topographical features, vegetation cover, land utilisation, and the
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nature of the parent material. The integration of covariate data can enhance the efficacy of
soil prediction models by enabling a more comprehensive understanding of the intricate
interplay between soil and its surrounding ecosystem. The inclusion of covariate environ-
mental data is imperative in soil prediction due to its ability to augment our comprehension
of soil-environment associations, capture spatial heterogeneity, offer insights into funda-
mental mechanisms, enable data amalgamation, and facilitate informed decisions regarding
land management. The integration of covariate data into soil prediction models enhances
their precision and usefulness in diverse domains, such as agriculture, environmental
governance, and land use management [23,24].

Table 1. Description of Soil Nutrients and Trace Elements.

Symbol Meaning Units SPT

N Nitrogen % SN
P Phosphorus mg kg−1 SN
K Potassium cmol kg−1 SN
Ca Calcium cmol kg−1 SN
Mg Magnesium cmol kg−1 SN
S Sulphur ppm SN

Fe Iron ppm TE
Mn Manganese ppm TE
Cu Copper ppm TE
Zn Zinc ppm TE
B Boron ppm TE

Mo Molybdenum ppm TE

ESP Exchangeable sodium
percentage % SN

CEC Cation exchange
capacity cmol kg−1 SN

Abbreviations: SN—Soil Nutrients, TE—Trace Elements, SPT—Soil Properties Type.

2.2. Soil Map

Environmental elements pertaining to geology, landforms, or vegetation are identified
through the use of aerial photographs, Landsat images, and digital elevation models (DEMs)
in traditional digital soil mapping. The method is then checked against real-world data [25].
The final outcome is a map labeled with soil classifications, which can be confusing to
users. Furthermore, there are other issues caused by mapping’s subjective character [26].
In traditional soil surveys, the soil is mapped according to the surveyor’s preconceived
notions [27]. Classical mapping’s conceptual framework was established using quantitative
and statistical methods. The method of developing and updating spatial soil information
systems via analytical and experimental observational methods paired with spatial and non-
spatial soil inference systems is generally known as digital soil mapping [28]. Digital soil
mapping is also known as computer-assisted soil cartography, numerical soil cartography,
pedometric mapping, environmental correlation, predictive soil mapping, or geographical
extrapolation utilizing models [25,29–32] whose evolution is rapidly rising as depicted
in Figure 2. The digital soil map depicted in Figure 3 presents an illustration of the soil
nutrient distribution in a specific area located in Ogun State, situated in the south-west
region of Nigeria.

In prior studies, a digital soil map was considered a digitized conventional soil map
in the form of polygons [33]. However, because the map was not created using statistical
inference, it cannot be construed as a digital soil map, but rather a digitized soil map.
The initial development of the SCORPAN framework for use in digital soil mapping was
accomplished by [34]. SCORPAN is a mnemonic for an empirical quantitative description
of relationships between soil and environmental factors with a view to using these as soil
spatial prediction functions for the purpose of digital soil mapping where each letter stands
for the following:
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S = soil classes or attributes
f = function
s = soil, other or previously measured properties of the soil at a point
c = climate, climatic properties of the environment at a point
o = organisms, including land cover and natural vegetation or fauna or human activity
r = relief, topography, landscape attributes
p = parent material, lithology
a = age, the time factor
n = spatial or geographic position.

Figure 2. The Evolution of Soil Mapping

Figure 3. Digital soil map depicting the soil’s nutrients for a location in South-West Nigeria.

Spatial soil prediction functions with an auto-correlated error are often used to forecast
soil class or soil attributes from so-called SCORPAN factors [34].

Sc = f (s, c, o, r, p, a, n) + e, or Sa = f (s, c, o, r, p, a, n) + e

‘e’ stands for spatially correlated residuals, where Sc and Sa are soil classes and soil proper-
ties as a function of soil, climate, organisms, relief, parent material, age, and geographical
position [35]. For the quantitative prediction of soil groups or dynamic soil properties
based on empirical observations, the SCORPAN model is employed.The majority of effort
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in digital soil mapping is based on developing a mathematical model that connects field soil
data and SCORPAN variables [36,37]. Afterwards, the model is used with extensive spatial
environmental data. To extrapolate, update, or disaggregate soil maps, digital soil mapping
can also employ conventional soil maps as input [38,39]. The underlying principle is to
employ machine learning (ML) techniques to find the knowledge inherent in completed
surveys or to reverse engineer the surveyor’s soil-landscape mental model [40].

2.3. Research Justification

The ability of ML-based methods to accurately forecast soil characteristics, crop growth,
and soil fertility has attracted a lot of attention in recent years. Texture, organic matter,
pH, nutrient content, soil moisture, and soil structure are just a few of the many soil
variables that may be analysed with the ML approach. ML techniques are superior to
traditional statistical methods because of their capacity to process massive amounts of
complex data and reveal hidden patterns. Several studies have focused on developing
ways for applying machine learning to predict soil parameters [41–43], crop growth [44–46],
and soil fertility [47,48].

Recently, a systematic literature review that highlights the research gaps in certain ap-
plications of deep learning techniques and evaluates the influence of vegetation indicators
and environmental factors on agricultural productivity was published in [49]. The authors
examined prior studies from 2012 to 2022 from various databases. The article focuses on
the benefits of employing deep learning in agricultural yield prediction, the best remote
sensing technology depending on data collection requirements, and the numerous factors
that influence crop yield prediction. In general, several studies have demonstrated the
efficacy of machine learning algorithms in predicting soil properties, soil fertility, and crop
yields. It is vital to keep in mind, though, that ML models’ accuracy is extremely sensitive
to the quantity and quality of data used in training, in addition to the algorithms and pa-
rameters with which they are implemented. Further research is needed to investigate how
to construct and refine ML models for predicting soil parameters and evaluate how well
they function in different environmental and soil circumstances. Farmers, policymakers,
plant breeders, and other professionals in the agricultural sector can all benefit from ML
recommendations.

3. Materials and Methods
3.1. Database Search Strategy and Eligibility Criteria

In this research, we developed a search strategy and utilized it to scour a variety of
databases in search of up-to-date, relevant research publications on the research study
of using machine learning models to create digital maps of soil and predict its physical
qualities. Google Scholar (https://scholar.google.com) and the ACM Digital Library (https:
//dl.acm.org/search/) were the primary resources used in the search. Timeframe for the
investigation: 2002–2022. These sources were selected because of their extensive indexing
of research into the use of machine learning models in DSM and SPP. These can be found
with little effort and are easily accessible.

3.2. Review Strategy

The review technique covers research design, search strategy, information sources,
study selection, and the method of data collection. Publications that met the predefined
inclusion and exclusion criteria were evaluated. Manuscripts that were comments, letters,
or editorials were excluded. The search strategy is composed as follows: (a) construct search
terms by identifying major keywords, required action, and expected results; (b) determine
the synonyms or alternative words for the major keywords; (c) establish exclusion criteria
to make exclusions in the course of search; and (d) apply Boolean operators to construct
the required search term.

Results for (a): DSM, SPP, ML, deep learning, soil properties, soil nutrients, soil map, soil
datasets and crop growth.

https://scholar.google.com
https://dl.acm.org/search/
https://dl.acm.org/search/
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Results of (b): smart soil, soil information system and soil fertility.
Results for (c): smart farming, plant disease, crop disease, articles in different languages
other than English.
Result (d): a, b, c combined using AND OR.

In this study, publications were chosen from the peer-reviewed literature by conduct-
ing a search using the generated search phrase on Science Direct, Scopus, Google Scholar,
and MDPI. Conference proceedings, journals, book chapters, and whole books are all
examples of vetted resources. The initial number of results returned by Google Scholar was
1328; of those, 480 fulfilled the initial selection criterion and 68 fulfilled the final require-
ments.The studies were appropriately grouped. Figure 4 shows the preferred reporting
items for systematic reviews and meta-analyses (PRISMA) flowchart for study selection.

Figure 4. PRISMA Model.

3.3. Characteristics of Studies

The literature search yielded a total of 1328 articles, of which 1308 were retained after
duplicates were deleted, 1240 were disregarded as irrelevant based on their article titles
and abstracts, and 88 were selected for a detailed review. After a thorough full-text review,
we settled on including 68 articles from 1999 to 2022. Only 20 of the 68 articles (as indicated
in Table 2) included information on the data type and accuracy achieved.

3.4. Quality Assessment

The vast majority of studies failed to satisfy standards in at least one of the six qual-
ity criteria examined. Limited sample size, an inadequate statistical analytical strategy,
failure to evaluate for confounders, and failure to disclose results for computational tech-
niques were the most frequently observed issues regarding lack of quality throughout
the investigations.
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Table 2. Existing Work on AI Models and DSM.

Reference Problem
Addressed AI Methods Metric Accuracy Dataset Types Limitations

[50]

DSM to inform
gully erosion

mitigation
measures

MNLR, CM KC,R2,RMSE 68%
Covariate and
climate data,

land type maps

Soil depth map
not a good

representation
of reality

(covariate layer
map required)

[51]

Assessment of
the soil fertility

status using
DSM and ML

QRF, CM R2, CCC,
RMSE, MAE

High and
average
accuracy

Soil dataset
(SOC, OM,
Kech„ Pass,

CEC,
SumBas, BS)

Model accuracy
was limited for
some of the soil
properties, such
as N and Kech

[52,53]

Improved
machine

learning models
accuracy
in DSM

CM, RM,
ANFIS, EGB,
ERT, ANN,

SVR, MARS,
KNN, GP

RMSE, MAE,
R2, CCC,
F-score

High accuracy

Clay, sand,
CaCO3, SOC,
SEC, pH, K,

Ca + Mg, Na,
SAR, EF, MWD

Uncertainty
was observed in

the predicted
values. Small
dataset used

[54]
Prediction of

soil depth
using DSM

QRF, RK RMSE, R2, CCC 30% Covariates
dataset

Lower accuracy
rate achieved

due to the error
in locating old

coordinates

[55]

Soil maps for a
wide range of
soil properties

using ML

RF, QRF, CM,
SVM Bias, R2, RMSE

Best accuracy
achieved
with QRF

Gravel, clay,
sand, density,
pH,SOC and
soil depths

(0–200 cm) 0–5,
5–15, 15–30,

30–60, 60–100
and 100–200 cm

Overestimation
was observed

for some
probability

values

[56]

Review on
DSM

algorithms and
covariates for
SOC mapping

RK, MLR, RF,
CM, NN, BRT,

SVM, GWR
-

RF performed
better

than others

Environmental
covariates,

parent material,
climate factor,

organic activity,
topography

Performance
metrics or
evaluation

methods not
reported

[57]

Spatial
prediction of
soil aggregate

using ML
algorithms and
environmental

variables

RF, SVM, kNN,
and ANN and

ensemble
modelling

RMSE, MAE,
R2, and

normalized
RMSE

Ensemble
achieved high

accuracy for all
soil targets

Soil properties,
remote sensing
data, legacy soil

maps, and
DEM

derivatives

Lower accuracy
achieved for

SOC categories

[58–60]

Prediction of
SOC and soil
total nitrogen

using DSM and
ML algorithms

RF, BRT, SVM
and Bagged

-CART

RMSE, MAE
and R2

BRT model
performed best

in predicting
SOC and STN

DEM
derivatives,

multi-temporal
Sentinel data,

environmental
data

Investigation
using other soil

properties is
required

[61]

Predicting and
mapping of

SOC using ML
algorithms

SVM, ANN, RF,
XGBoost, CM,

RT, DNN

RMSE, MAE,
R2 and CCC

DNN mapped
SOC contents

more accurately

Terrain
attributes,

remote sensing
data, climatic

data,
categorical data

Further
investigation on

the dataset
using hybrid
algorithms is

required
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Table 2. Cont.

Reference Problem
Addressed AI Methods Metric Accuracy Dataset Types Limitations

[62]

Soil moisture
prediction

using
multi-sensor
data and ML

algorithm

RFR, XGBoost,
SVM, CBR and
GA for feature

selection

RMSE and R2

XGBR-GA
hybrid model

yielded the
highest

performance
(R2 = 0. 891;

RMSE =
0.875%)

DEM
derivatives,

Sentinel-1 and
Sentinel-2 data.

Testing the
framework in

large-scale
areas with

various
land-use

characteristics
is required

[63]

Supervised
maps for

predicting soil
moisture

Unsupervised
SOM,

supervised
SOM, semi-
Supervised

SOM, and RF

R2, accuracy,
and Cohen’s

KC

Higher
accuracy

achieved with
the SOM
methods

Soil moisture
and land cover

dataset

RMSE and
MAE factors are
not considered

in the
performance
evaluation

[64]

Predictive
mapping using

semi-
supervised

ML

Decision trees,
logistic

regression (LR),
SVMs and

graph-based
semi-

supervised ML
(GS-ML)

Mean accuracy
(%), accuracy

range (%),
accuracy
standard

deviation (%)

GS-ML
achieved higher

accuracy

Environmental
covariate data

Improvement is
required for
parameter

setting, RMSE,
R2 and MAE

evaluations are
not considered

[37]

ML for
predicting soil

classes in
semi-arid

landscapes

Multiple
classifications

and
regression ML

Kappa analysis,
Brier scores and
confusion index

- Environmental
covariates

Model accuracy
was obtained

when there are
few soil classes,
limited dataset
to investigate

“rare”
soil classes

[65]

Mapping of soil
water erosion

using ML
models

Weighted
subspace

random forest ,
Gaussian

process and
naive Bayes

(NB) ML
methods

Accuracy,
Kappa index

and probability
of detection

-
Soil texture,

land and
climate dataset

The data
collection and
sampling of

them were not
on the same
scale. Also,

RMSE, R2 and
MAE factors are
not considered

in the
performance
evaluation

[66]

Digital
mapping of soil
carbon fractions

using ML

RF, SVM, CaRT,
BaRT, BoRT, RK,

OK

Mean, standard
deviations,

prediction error,
and R2

RF achieved the
best accuracy

Soil data
(0–20 cm),

carbon

Further
investigation

required on the
use of more

sophisticated
predictors
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Table 2. Cont.

Reference Problem
Addressed AI Methods Metric Accuracy Dataset Types Limitations

[67] Multi-scale
DSM with DL DL-ANN, RF R2 DL achieved

4–7 % than RF

Silt, clay, ZC,
SFP, DEM
resolution

The model is
not tested with

some
environmental

data such as
climate,

lithology, or
land cover

[68]

Semi-
supervised

DNN
regression for

spatial soil
properties
prediction

DNN, GA, SVR
and regression

methods

RMSE, MAE,
R2, Bias, ratio

of performance
to inter-quartile

distance

DNN achieved
the highest
accuracy

Hyperspectral
remote sensing

image data

Sensitive to the
quality of the
initial training

dataset and
model not

tested with a
large number of

samples

[69]

Assessment of
landslide

susceptibility
using DL with

semi-
supervised

learning

DNN, SVM and
LR.

Accuracy,
Kappa index,

predictive rate
curves (AUC),

and
information

gain ratio (IGR)

DNN achieved
higher accuracy

with AUC of
0.898

Land cover and
soil data

The K-means
algorithm was

tested using
fixed value and

limitation by
the accuracy of

layers and
sampling
process

observed

Abbreviations: DSM—Digital soil mapping, ML—Machine learning, DL—Deep learning, MNLR—Multi-nominal
logistic regression, CM—Cubist model, QRF—Quantile regression forest, KC—Kappa coefficient, RMSE—Root
mean square error, MAE—Mean absolute error (MAE), R2—Coefficient of determination, CCC—Lin’s concor-
dance correlation coefficient, BS—Base saturation, RF—Random forest. SOC—Soil organic carbon, OM—Organic
materials, Kech—Exchangeable K, ANFIS—Adaptive-network-based fuzzy inference system, EGB—Extreme
gradient boosting, ERT—Extremely randomized trees, ANN—Artificial neural network, SVR—Support vec-
tor regression, SFP—Soil formation patterns, DEM—digital elevation models, BRT—Boosted regression tree,
GWR—Geographically weighted regression. MARS—Multivariate adaptive regression splines, KNN—k-nearest
neighbour, GP—Genetic programming, SAR—Sodium adsorption ratio, SFP-EF—Erodible fraction of the soil,
MWD—Mean weight diameter, SEC—Soil electrical conductivity, RK—Regression kriging model, ZC—Zinc
concentration, Pass—Assimilable P, CEC—Cation exchange capacity, SumBas–Sum of bases, PLSR—Partial least
square regression, OK—Ordinary kriging, CART—Classification and regression trees, CBR—CatBoost gradient
boosting regression, GA—Genetic algorithm, SOM—Self-organizing maps.

3.5. Data Sources and Search Strategy

We searched Google Scholar for studies published before October 2022. We consid-
ered the top 1328 papers which reported on the application of machine learning for soil
properties or soil fertility prediction. Keywords from subject headings or titles or abstracts
of the studies were searched for with the help of Boolean operators (and, or) with language
restricted to English. In addition, we reviewed the reference lists of primary studies and
review articles.

3.6. Inclusion and Exclusion Criteria

All research in which machine learning approaches were applied to predict soil quali-
ties was reported. The included publications had to include the AI technique used or the
soil characteristics problem addressed in the article. Articles dealing with DSM’s three
key datasets and techniques were also included in the study selection. Articles on crop
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diseases or plant disease prediction, statistical analyses, studies on palm kernel agriculture,
and irrigation systems for crop growth monitoring were all excluded. Editorials, narrative
review articles, case studies, conference abstracts, and duplicate publications were all
discarded from the analysis.

3.7. Data Extraction and Quality Assessments

The full texts of the citations chosen for review were acquired, and the reviewers inde-
pendently collected all study data, resolving disagreements by consensus. The initial author,
year of publication, study setting, ML approach, the data type used or recommended, per-
formance measures used, and accuracy attained were all extracted for every study.

4. The Impact of Soil Nutrients and Fertility on Crop Growth

Nutrients from photosynthesis and soil are two of the most important for any plant’s
development. This suggests that it may be impossible for any crop to achieve sufficient
yields without adequate fertilizer input. Soil nutrients are one of the most crucial types
of food for plants. Crops such as corn, cassava, and yam rely heavily on the nutrients in
the soil in order to thrive. Three of the most common nutrients in the soil are nitrogen
(N), phosphorus (P), and potassium (K). The soil also contains a wide variety of other
nutrients, such as calcium, magnesium, sulfur, zinc, boron, copper, iron, manganese, and
molybdenum. An available nutrient index is a useful tool for describing soil fertility. Soil
fertility is not guaranteed simply by the presence of all these nutrients. Fertile soil is one
that contains an abundance of the specific nutrients required by a given crop. The term
“soil fertility” refers to the soil’s inherent capacity to support plant development. For soil
to be considered sustainable, it must meet certain conditions, including but not limited
to the following: a suitable soil pH; the presence of suitable microorganisms; adequate
internal drainage; and the capacity of the topsoil to contain soil organic materials such
as algae, sewage sludge, manure, and many more [70,71]. For this reason, healthy, fertile
soil is essential for maximizing harvest production. Soil nutrients and quality have been
proven to have a significant impact on the yields of corn, cassava, and yam [72–77].

4.1. Research on Soil Nutrients and Crop Yield in Developing Countries

The authors of [78] analysed the nutrient composition and corresponding crop yield
in soil that had been treated with organic manures. The study followed an experimental
design, as chosen by the authors. An experiment was conducted by sowing four (4) maize
seeds into various earthen containers. To improve the soil’s quality, organic manure was
spread over it. Poultry manure, composted animal manure, and press mud are the manures
used. After six days, the plants were thinned so that each pot would hold two plants. The
study discovered that after applying organic manure, soil organic matter, phosphorus, and
potassium bioavailability all increased. Both the stature of the maize plants and the total
leaf area were boosted by the application of organic manures. These findings demonstrated
that soil nutrients can stimulate more robust growth in maize. In Kenya, Ref. [76] examined
how maize fared in terms of growth and yield on a specific category of soil. A randomized,
complete block nutrition omission trial was used to determine how maize responded to
nutrient administration. Ferralsols was the soil type employed. The treatments consisted of
applying one of six different inorganic fertilizers: NK, NP, PK, NPK, or NPK + CaMgZnBS.
The corn harvest was severely diminished by the use of PK fertilizer. The application
of urea resulted in the maximum yield (1800 kg/ha). The author concludes that using
fertilizers rich in nitrogen, phosphorus, and potassium will increase crop yields in maize.

In a Northern Zambia study [70], the authors studied the connection between farming
methods and soil nutrient levels. Soils in the area are often either orthic arcrisols or feric
dirt. The majority of the population in this area is engaged in agriculture, and cassava is
their primary crop. Around 40 farmers and 120 fields were chosen from across 10 villages.
Fieldwork on the cassava was carried out in the fourth quarter of 2018, thus the plants
were between one and three years old. The study found that the potassium content of
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cassava decreased from the first to the second growing season. Cassava was shown to have
nutritional imbalances, which were blamed on its moderate quantities of exchangeable
magnesium. The regression analysis also revealed that soil organic carbon and leaf area
index were significant predictors of cassava yield.

Research along these paths was also carried out in Southwestern Nigeria. Ref. [79]
employed a survey research design to investigate the topic of soil fertility in cassava farms.
Soil samples were also collected from each of the 33 farmers’ fields in Iwo and Osogbo.
The chemical and physical properties of the soil sample were analysed in a laboratory. The
research concluded that the soil in roughly 80% of the fields is deficient in organic matter.
It was also discovered that the pH of the soil is generally acidic, with readings ranging
from 5.4% to 6.4%. Phosphorous and nitrogen levels in the soil were also found to be
below the minimum required for cassava cultivation. Soil contains sufficient amounts of
essential nutrients such as calcium, potassium, and magnesium. These results suggest that
the potential cassava harvest in Osun State is comparable to the national average.

In Ethiopia, Ref. [75] analysed the nutritional levels in the soil of southern smallholder
cassava crops. The study’s focus was on the town of Wolaita in southern Ethiopia. There
were 12 cassava farms in Wolaita, from which data was compiled. Soil samples and
information about how local farmers handle their soil were the types of information
being collected. The results were interpreted by looking at the physical and chemical
characteristics of the soil. Results from the study were mixed in quality. In the soil that was
tested, there was an adequate supply of manganese. Soil acidity might be high to mild,
and in 83% of farms, the amount of exchangeable calcium (Ca) was below the minimum
acceptable level of 5 Cmol (+) kg−1. Boron and copper were both absent from the cassava
fields, and iron and zinc levels were low.

Ref. [80] examined the impact of applying inorganic fertilizer and biochar on yam
yields in a Ghanaian agroecological zone. The research was a randomized block-design fac-
torial experiment. Three inorganic fertilizers and four biochars made from wood shavings
were applied. The research showed that there was no discernible change in soil characteris-
tics in response to the experimental treatment. The amount of nitrogen in the atmosphere
decreased. Six months after planting, applying biochar considerably enhanced the number
of seed yams per acre, whereas applying fertilizer increased productivity. This means
that yam cultivation can benefit from biochar even at high concentrations. Ref. [81] was
primarily interested in how soil fertility affected the variations in yam species’ growth. The
two most common species are D. alata and D. rotundata. The D. alata species was reported
to have better growth statistics than the D. rorundata species. The two yam species were
found to produce more at the forest location than in the savanna area, which was due to
the higher soil fertility there. The deficient nitrogen and potassium nutrients at the savanna
location were also responsible for a significant fall in the leaf area index.

4.2. DSM/ML Soil Prediction in Developing Countries: Challenges

In underdeveloped nations, the application of digital soil maps and machine learning
for soil prediction is frequently hampered by a number of reasons, including the following:

(a) Data scarcity: In many underdeveloped nations, soil data is scarce or nonexistent,
making accurate digital soil maps and training machine learning models problematic.
This occurs frequently owing to a scarcity of resources and funds for soil surveys and
studies.

(b) Low technical expertise: Poor countries may lack professionals with the technical
abilities needed to produce and evaluate digital soil maps as well as developing
machine learning models. This can make it challenging to effectively implement these
technologies.

(c) Restricted access to technology: Many underdeveloped countries may lack the requi-
site infrastructure or resources to facilitate the usage of digital soil maps and machine
learning. This can involve a lack of internet connectivity, computer equipment, and
access to software and data.
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(d) Inadequate governmental capacity: Poor countries may lack the institutional ability
necessary to properly employ digital soil mapping and machine learning technology.
These can include ineffective governance systems, insufficient financing for research
and development, and a lack of coordination among various government agencies
and stakeholders.

5. Soil Information System

The four main components of soil are minerals, water, air, and soil organic matter
(SOM). The ratio and content of these components have a significant impact on the physical
properties of soil, including its texture, structure, and porosity (the percentage of pore
space). The capacity of the soil to transmit air and water is thus influenced by these features.
It is possible to assess the soil’s quality using a small collection of data on its properties,
such as texture, organic matter, pH, bulk density, and rooting depth. To comprehend soil
quality, soil organic matter is very crucial because it can have an impact on a variety of soil
properties, including other components of the limited dataset [82]. Soil information systems
provide aggregate measurements of soil quality, such as the soil’s functional capacity and
its performance in relation to a certain application. To “learn” or understand from data
how soil components are distributed throughout space and time, statistical models have
been employed in soil science research, and more specifically, pedometrics [83]. In order to
calibrate, validate, and compare models, Ref. [84] suggests using soil component datasets
as standard evaluation datasets, starting values, and system parameters. It is a crucial piece
of the puzzle when trying to model the Earth’s system.

Given the huge need for quantitative geographic soil data and its current scarcity,
it is crucial to create and implement ways of providing this information. Every soil in-
formation system needs to be flexible enough to accommodate user needs and requests
while also managing datasets that change in space and time [85]. The tremendous growth
of computing and digital technology has led to the emergence of enormous quantities of
data and tools in every domain. As a result, numerous initiatives have been launched to
create data infrastructures for spatial soil information systems [86]. For more efficient land
deterioration prevention and control, regional development feasibility studies, disaster risk
prediction (such as floods and landslides), environmental quality restoration, and formative
strategic planning, accurate and up-to-date information on the environment, extent, spatial
distribution, opportunities, and constraints of soil properties are required [87].

Over time, many methods have been developed for collecting soil data. The backbone
of most soil information systems consists of databases containing pedotransfer functions,
soil profiles and analytical data, and a collection of methodologies. Soil data providers,
both public and private, can take advantage of the available technical solutions and apps
for data management [88]. It is reported in [89] how a new national soil information system
for New Zealand was developed and implemented using a hybrid approach of analogue
and digital soil mapping methods. This hybrid approach integrates both traditional soil
survey processes and data with modern digital soil mapping techniques and information
in order to (eventually) achieve total coverage of New Zealand at a 1:50,000 scale, soil data
collection, archiving, and verification by photograph and database.

Several audiences receive customized dynamic fact sheets, maps, and spatial data. The
system can conduct pedotransfer functions (PTFs) and other digital soil mapping activities,
manage and simulate soil uncertainty, and produce relevant metadata reports. Soil pH,
calcium (Ca), and phosphorus levels were predicted using an artificial neural network
(ANN) and random forest (RF) machine learning techniques [90]. Farmers can use the
Ca, P, and pH readings from a soil sample to determine how much fertilizer to add to
the soil. Soil particle-size fractions (PSF) were predicted in Nigeria at six traditional soil
depths using GlobalSoilMap criteria (0–5, 5–15, 15–30, 30–60, 60–100, and 100–200 cm). RF
provides reliable predictions of the particle-size fraction composition of Nigeria’s soil [91].

Using ESRI software and both main and secondary soil maps based on the geograph-
ical subdivision of mapping units found in the dataset source, ref. [92] created a soil
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information system. Modern soil characteristics are displayed by this system. 250,000 plots
were used for sampling, and 100,000 soil mapping units (SMUs) were analysed. Soil
characterization units have advanced relational databases and physical and chemical soil
categories that facilitate digital descriptions of soil profiles. Soil organic carbon (g kg1),
soil pH, sand, silt, and clay fractions (%), bulk density (kg m3), cation-exchange capacity
(cmol+/kg), coarse fragments (%), soil organic carbon stock (t ha1), and depth to bedrock
are just a few of the local soil properties that [93] takes into account using tree-based models
(random forest and gradient tree boosting) at a 250-metre resolution in a 3D soil information
system (cm). In order to better assist farmers in managing their crops, Ref. [94] introduced
a new IoT and machine learning-based soil information system that would provide them
with real-time temperature and soil moisture data for environmental monitoring. Modern
technologies allow farmers to instantly report crop, soil variety, and N-P-K levels. The
technology is designed to be used by farmers in any location while allowing end users to
control their connected farms from afar. There is a rise in climate change adaptation and
mitigation efforts.

Ref. [95] built a method for managing soil that makes informed crop suggestions
using classifier models. An intuitive web-based content management system is part of
the created soil information system, which can be used to make planting predictions. The
system is extensible because it can be tested on a wide variety of crops and because it
presents the possibility of employing information mining techniques to estimate crop yields
based on input parameters for environmental circumstances. However, the soil databases
(information systems) currently in use are not extensive or precise enough to incorporate
soil data into the global geographic data infrastructure [96]. This is mostly due to the
fact that, given their current capacity, they can only store information from sporadic and
occasionally available conventional soil surveys. Due to the slow and expensive nature of
conventional soil survey methods, there are not many spatial datasets available for soil. The
future of conventional soil surveying is also causing some individuals considerable concern
due to a general problem in the collection of new field data. The authors of [96] expect
technological innovations such as handheld field spectrometers to come to the rescue. To
effectively deal with this problem, it was proposed that existing soil information systems
be expanded to allow for the generation of new soil maps in addition to the storage and
use of digitized (pre-existing) soil maps. One definition of digital soil mapping is the
process of creating and populating spatial soil information systems via field and laboratory
observational methods in combination with non-spatial and spatial inference systems.

6. Artificial Intelligence Models for Soil Properties Prediction

A quick perusal of related work on artificial intelligence (AI) models and digital
soil mapping (DSM), as summarized in Table 2, reveals that AI models are the norm for
predicting soil attributes and digital soil mapping. Ref. [50] offered a computerized soil
mapping method for preventing gully erosion by advising landowners on preventative
steps. Using R-Squared, KC, and RMSE as accuracy metrics, a multiple nonlinear regression
model was built with 68% precision. Nonetheless, the low accuracy is understandable
given that the soil depth map is not a fair depiction of the sample in reality, making it
difficult to conduct research. The use of machine learning algorithms for estimating soil
depth has been explored further in [54]. QRF models were utilized, and with RMSE as the
measure of evaluation, they were able to reach an accuracy of 30%. It can be inferred from
the accuracy percentage that soil depth in digital soil mapping is still a discoverable topic.
An evaluation of soil fertility using DSM and machine learning techniques was proposed
in [51]. Using the Quality Reference Framework (QRF), great accuracy was attained by
utilizing the evaluation metrics RMSE and MAE. However, the model’s precision was
constrained for some soil characteristics, such as nitrogen (N) and potassium (K). Soil
maps for a variety of soil qualities, for which QRF was able to provide the best accuracy, is
another issue that was addressed.
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Self-organizing maps (SOMs) were also employed as a machine learning model [63].
Supervised maps are used to forecast soil moisture using SOM and random forest (RF)
models; when tested on a dataset including both soil moisture and land cover, SOM showed
greater model accuracy than RF when evaluated with respect to R2 and KC. Multi-sensor
data and ML algorithms, including RF, XGBoost, and SVM (supervised vector machine),
were also used to make predictions about soil moisture, with an accuracy of 87.5% [62].
Many deep learning methods, such as deep neural networks (DNN) and artificial neural
networks (ANN), have been used to predict soil attributes in space. With an AUC of 89.8%,
DNN achieved the highest accuracy. Due to the lack of high-quality artificial intelligence
solutions for digital soil mapping, researchers from all over the world are paying close
attention to the field.

In addition, a synopsis of the prior research conducted on intelligent soil prediction
between 2016 and 2022 is provided in Table 3, along with information regarding the source,
solution provided, and dataset type. Finally, some of the existing online and mobile
applications pertaining to soil are described in Table 4, along with the documented source,
application name, function, and date.

Table 3. Previous Work on Smart Soil Prediction (2016–2022).

Source Solution Soil Dataset

[97]
Prediction of clay soil expansion using

ML models and meta-heuristic
dichotomous ensemble classifier

Soil swelling and soil properties data.

[98] Predicting crop yield on a particular soil
using IoT Nutritional value of soil data.

[99] ML approach to simulate soil CO2 fluxes
under cropping systems Soil classification and temperature data.

[100] Predicting Africa soil properties using
ML techniques

Soil sample measures, soil depth (topsoil
or subsoil) and climate data.

[101] Soil analysis of micro-nutrients using ML
and IoT Soil micro-nutrient and soil pH data.

[102] Estimation of the moisture of vineyard
soils from digital photography using ML. Soil sample and photographic data.

[103] Prediction of soil shear strength
parameters using ML algorithms

Soil properties and cone penetration test
data.

[104] Analysis of ML methods for agricultural
soil health management Secondary data.

[105] Crops yield prediction based on mL
models in West African countries

Climate, yields, pesticides and chemical
data.

Abbreviations: IoT—Internet of Things, ML—Machine learning.

Table 4. Existing Soil Web/Mobile App.

Source Application
Name Year Functions

[106] SQAPP 2015 Sustainability of SM and high
productivity

[107] SoilWeb 1999 Instantaneous soil information

[108] AgriApp 2014 Crop advisory, soil testing and
drone services

[109] LandPKS 2020 Soil health monitoring and land
management
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Table 4. Cont.

Source Application
Name Year Functions

[110] Crop
App Index 2017 Agricultural decision support

tool

[111] MySoil
Test Kit

Not
Specified

Information to improve soil and
plant health

[112] SIFSS 2017 Provides indication scores for
soil types.

[113] Soil Test
Pro 2019 Soil nutrient management sys-

tem

[114] SoilScapes Not
Specified Digital smart information system

[115] SoilInfo
App 2017 Generate open soil data

[116] SoilCares 2021 Smart application for monitoring
soil nutrients and soil fertility

6.1. Data Quality and ML Model Considerations

The efficacy of smart soil systems in predicting accurate outcomes is contingent
upon several factors, with the foremost being the quality of the data employed and the
identification of a machine-learning model that yields the optimal result. There exist
various measures that can be implemented to enhance the accuracy of models employed
for predicting soil nutrient levels and to improve the quality of data. A few notions are
discussed below:

(a) Data gathering and preprocessing: This entails making sure that the soil types, geo-
graphic areas, and environmental conditions represented in the model training data
are accurate. In order to understand soil nutrients, data must also be gathered through
soil samples, lab testing, remote sensing, and historical records. The final step is data
cleaning, which includes handling missing numbers, fixing errors, and removing
outliers [117].

(b) Feature engineering: In order to enhance the accuracy of soil nutrient level estimation,
it is imperative to identify and extract relevant features from the collected data. The
influence of environmental factors, including climate, rainfall, and cultivation of land,
as well as the chemical, biological, and physical characteristics of soil, is potentially
significant [118].

(c) Integrate domain knowledge: In order to gain further insight into the determinants
that impact the levels of nutrients present in the soil, it is recommended to consult with
experts in the domain [119], including agricultural scientists or researchers specializing
in soil science. Applying this data when constructing the models and determining
which attributes to incorporate is essential.

(d) Innovative modelling methods: Conducting research on state-of-the-art machine learn-
ing techniques [120] and advanced deep learning architectures is of great
significance [121]. Furthermore, it is imperative to consider ensemble methodolo-
gies that employ an assemblage of models to enhance the accuracy of predictions.

(e) Model testing and verification: It is imperative to assess the model capacity to extrap-
olate to new datasets through the application of rigorous evaluation methodologies.
Furthermore, assessment criteria are examined and monitored to measure the precision
of the models [122].
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6.2. Considerations for Choice of ML Technique for Soil Nutrient Properties Prediction

The choice of ML technique to employ for soil nutrient properties prediction and
growth response analysis [123], as in any other class of problem, depends on several
factors including the nature of the problem under consideration, the available data, and the
desired outcome [34,124]. Different machine learning algorithms are designed to address
specific types of problems, be it a classification, regression, clustering or recommendation
problem [125,126]. The size and quality of available data must also be considered because
some algorithms require large amounts of data to generalize well, while others can work
effectively with smaller datasets, thereby avoiding fitting problems [127]. Depending on
the algorithm, certain types of features may be more suitable, thereby necessitating the
need for feature selection and extraction [128]. This is to enhance the predictive power of
the features of the dataset.

The interpretability and explainability of a given model [129], when required, may
impact the choice of the model over classical models. Some algorithms, such as decision
trees or linear regression, provide easily interpretable models, while others, such as neural
networks, may be more complex and harder to interpret. The statistical properties of the
available dataset also largely determines the choice of ML technique to use in a given
instance [130]. Considering the complexity of the relationship between the input variables
and the target variable, simple problems may be effectively solved by linear models,
while complex problems with non-linear relationships might require more sophisticated
algorithms such as random forests or support vector machines.

Domain knowledge is a crucial element in the choice of ML technique used for pre-
dicting soil nutrients properties. Incorporating domain knowledge or expert insights into
the decision-making process in the preprocessing and model building is essential to the
reliability of the outcome of the prediction. Understanding the problem domain, a key
component of responsible AI [131], can help guide the selection of appropriate algorithms
and feature engineering techniques. Table 5 presents a quick summary of some popular
ML techniques with their associated relative strengths and weaknesses which should be
considered when determining the technique(s) to employ in predicting soil nutrients.

Table 5. Summary of Some ML Techniques with their Strengths and Weaknesses.

ML Technique Strengths Weaknesses

Support Vector Ma-
chine [132,133]

Effective in high-dimensional spaces, less
prone to overfitting, versatile kernel functions,
effective with small to medium datasets, in-
sensitive to irrelevant features

Performs poorly with large or noisy data.
Highly sensitive to hyparameter tuning

k-Nearest Neigh-
bours [134,135]

Simple, highly intuitive, non-parametric, flex-
ible decision boundaries, considers the local
structure of the data, can be effective with both
linear and non-linear relationships, handles
outliers relatively more efficiently

There is high computational complexity dur-
ing prediction phase, distance metric selection
may be ambiguous, sensitive to the curse of
dimensionality, struggles with imbalance data,
has storage issues during prediction

Decision Trees
[136,137]

Offers good explainability and interpretabil-
ity, cognaissant to feature importance, handles
non-linear relationships among features rela-
tively well, good for mixed data (categorical +
non-categorical), has low computational com-
plexity, handles outliers well

Prone to overfitting, highly unstable, espe-
cially to a slight variation in the training set,
makes locally optimal decisions without con-
sidering the global optimal structure, tends to
favour features with a large number of cate-
gories or high cardinality, not well-suited for
problems where classes are linearly separable,
struggle to represent complex relationships
that require global knowledge or long-range
dependencies in the data
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Table 5. Cont.

ML Technique Strengths Weaknesses

Linear Regression
[138,139]

Interpretable, simple, resource efficient, ro-
bust feature importance identification, often
useful as a baseline model for comparison
with more complex algorithms

Often assumes a linear relationship between
the input features and the target variable,
does not handle outliers efficiently, relatively
limited predictive power, naive assumption
of homoscedasticity, also sensitive to multi-
collinearity

Logistic Regression
[140–142]

Interpretability, efficiency, probabilistic prob-
lems, less prone to overfitting and allows for
internal feature selection

Assumes linearity like the linear counterpart,
handles limited complexity, cannot handle
outliers, limited for binary classification, and
can be afftected by imbalance dataset

Artificial Neural
Network [143–145]

Ability to learn complex patterns, flexible ar-
chitecture, automatically learn relevant fea-
tures, supports parallel processing and has
high generalization power thereby reducing
fitting problems

Requires large amount of data, has high com-
putational complexity, they lack good inter-
pretability because of their black-box nature,
sensitive to hyperparameter tuning

Naive Bayes [146]
Efficient with large datasets, scalable, robust
to irrelavant features, effective with limited
training sets, interpretable

Sensitive to skewness, does not capture com-
plex relationships between features, highly
sensitive to scaling problems

Random Forest
[147]

Known for high accuracy, handles outliers
and noisy data, handles high cardinality, good
with variable importance, resistant to overfit-
ting

Lacks explainability, computationally expen-
sive, requires good hyperparameter tunning
for optimal performance, biased towards ma-
jority classes

Gradient Boosting
[148]

High predictive accuracy, high flexibility in
handling mixed data types, provides insights
into feature importance, handles outliers in-
ternally, handles missing data, can be parral-
lelized efficiently

Computationally expensive, has a potential
problem of overfitting, difficult to interpret,
relies heavuly on the order (or sequence) of
the training data

7. Findings and Discussion

Figure 5 is a chart depicting the issue that this review seeks to address (as outlined
in Table 2). According to the visual analysis, the majority of published works (67.3%)
dealt with issues of soil nutrient characteristics; 17.3% handled DSM; 11.1% addressed soil
erosion; and 5.5% dealt with soil fertility. Figure 6 also provides a visual representation
of the most popular model employed in the research covered in Table 2’s meta-analysis,
which shows that random forest (RF) is the most popular choice for prediction, followed by
support vector machine (SVM) and other ML algorithms as shown in Figure 6.

Our findings show that RF outperformed other ML models in terms of accuracy.
Random forest is a popular machine-learning approach that can handle both regression
and classification challenges, which makes it an adaptable option for forecasting soil
characteristics, nutrients, and soil fertility. At the training phase, the algorithm generates
a variety of decision trees and then combines their results to extrapolate. Random forest
has a number of advantages that may have led to its excellent success in forecasting soil
characteristics, nutrients, and soil fertility:

(a) Resiliency to distortion: When compared to other algorithms, RF is less susceptible to
noise and outliers, which might help it deliver precise forecasts even when working
with unclear or missing soil data.

(b) Managing massive data: Because RF can accommodate large datasets with many input
features, it is well suited for forecasting soil qualities with several factors impacting
their values, such as pH, moisture content, organic matter, and nutrient levels.



Big Data Cogn. Comput. 2023, 7, 113 19 of 25

(c) Features selection: RF automatically chooses the most significant features for making
predictions, which can aid in identifying the main soil qualities and nutrients that are
most important in determining soil fertility.

(d) Overfitting minimization: Random forest employs numerous decision trees and aggre-
gates their outputs, which can aid in the reduction of overfitting, a typical problem in
machine learning in which models perform well on training data but fail to generalize
to new data.

(e) Random forest’s ensembling feature, in which it integrates many decision trees,
aids in bias reduction and prediction accuracy by using the collective wisdom of
multiple trees.

Figure 5. Graphical representation of the problem addressed.

Figure 6. Graphical representation of the top 12 ML models used.

Overall, random forest’s superior performance in predicting soil characteristics, nutri-
ents, and soil fertility can be attributed to its capacity to deal with noise, big datasets, feature
selection, overfitting reduction, and ensembling, making it a useful tool for soil-related
prediction tasks. It should be noted, however, that the performance of any machine learning
method is dependent on the quality of the data used for training and testing, as well as
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suitable parameter tweaking and model evaluation approaches. Furthermore, merging
deep learning algorithms with ML can yield an ideal answer. In a nutshell, additional
research on intelligent soil prediction and smart agriculture is imperative for broadening
the knowledge repository, improving prediction techniques, and addressing the challenges
confronting contemporary farming. Through the utilisation of these tools, it is possible to
enhance food security, optimise resource utilisation, alleviate the impact of environmental
degradation, enable precision farming techniques, and promote sustainable development
within the agricultural sector.

8. Conclusions

This study reviews machine learning methods for predicting soil properties, agricul-
tural yield, and soil fertility. This literature evaluation illuminated current research gaps
in a specific field of machine learning methodologies and provided useful data on soil
attribute prediction. Through this extensive literature study, we learn about the several
forms of machine learning used in this subject, the soil characteristics problem that has
been addressed, and crop yield prediction criteria. Each study focused on a distinct set of
soil qualities, geographical conditions, and other features. For soil prediction, RF and deep
learning outperform conventional machine learning methods. The RF machine learning
algorithm and deep learning approach can accurately predict soil conditions and inform us
if a crop can be grown there given the model’s inputs. From the literature evaluation, it
is observed that the task of predicting soil or agricultural yield through machine learning
poses significant challenges. Inaccurate data has the potential to decrease the precision
of forecasting. The process of generalising models is impeded by variations in regional
factors, climatic conditions, and farming practices. Additionally, the selection of significant
features from multiple influencing factors requires domain expertise and experimentation.
In order to employ technology in a responsible manner, it is imperative to address all of
these issues. The refinement of machine learning techniques for the purpose of predicting
soil characteristics and crop yield is facilitated by expert collaboration, model monitoring,
and modification. The application of machine learning techniques to soil information
analysis can lead to the optimisation of fertiliser usage, prediction of pest and disease
outbreaks, and recommendation of precise irrigation strategies. This can result in enhanced
agricultural productivity and efficient management of land resources.

The amalgamation of DSM and ML techniques for soil prediction poses certain chal-
lenges in less developed nations. The challenges encountered in the implementation of
machine learning and data science initiatives include language and cultural impediments,
insufficient financial resources, suboptimal internet connectivity, and restricted availability
of reliable and all-encompassing data. In order to address these challenges, it is crucial to
allocate resources towards data collection, network enhancements, computing infrastruc-
ture, and the promotion of education and training to cultivate local expertise. Partnerships
and collaborations with foreign organisations can be advantageous for both information
sharing and personnel development. Furthermore, increasing soil investigation, analytical
ability, facilities, and public participation would solve these issues. Digital soil mapping
and machine learning for soil prediction can improve soil management and agricultural
productivity in developing nations.
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