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A B S T R A C T   

This study aimed to predict distribution and Total Carbon Stock (TCS) dynamics of Acacia abyssinica, Carissa 
edulis, and Juniperus procera in the Hugumbrda Grat-Kahsu National Forest in current (1970–2000) and future 
climate scenarios (2021–2100). Bioclimatic, soil, and elevation data were used for modeling using Maxent, with 
model accuracy evaluated using Area Under the Curve (AUC), Kappa test and True Skill Statistic (TSS). Signif-
icant differences were observed in distribution of species between current and future periods under Shared 
Socioeconomic Pathways (SSPs) of SSP2-4.5 and SSP5-8.5 scenarios. The main contributing predictors of the 
species distribution were temperature seasonality, altitude, and precipitation of the warmest quarter. All species 
were projected to shift to higher altitudes in the future. Acacia abyssinica’s current potential distribution (42.9 %) 
could expand to 77.1–99.2 % (SSP2-4.5) and 63.8–72.9 % (SSP5-8.5). Carissa edulis could extend from 54.2 % to 
89.5–100 % (SSP2-4.5) and 77.1–87.9 % (SSP5-8.5). Juniperus procera’s might increase from 63.8 % to 91.8-99.7 
% (SSP2-4.5) and 78–88.1 % (SSP5-8.5). The projected future climate is expected to result in an expansion of new 
suitable areas for all three species. The TCS estimates per km2 were 169 (Acacia abyssinica), 46 (Carissa edulis), 
and 1381 ton (Juniperus procera). In SSP2-4.5, Acacia abyssinica’s TCS could rise from 25,688 to 59,319 tons, 
Carissa edulis from 8,832 to 16,284 tons, and Juniperus procera from 312,106 to 487,493 tons. In SSP5-8.5, 
projections indicated 43,602 tons (Acacia abyssinica), 14,306 tons (Carissa edulis), and 430,872 tons (Juniperus 
procera). The study concludes by recommending the strategic planting of these species in both current and future 
suitable areas to enhance ecosystem services and ensure their sustained existence in the face of changing 
climates.   

1. Introduction 

Climate change has effects on biodiversity at all levels, ranging from 
individual organisms to entire biomes (Parmesan et al., 2011). It results 
in the loss of habitats, alterations in geographic landscapes, and impacts 
on the survival of various species. It contributes to accelerating upward 
shifts of species to high elevations (Wolf et al., 2016). In addition, 
climate change causes both expansions and contractions of forest 
coverage (Lucier et al., 2009). 

Ethiopia, a biodiverse country in Africa, boasts approximately 6,000 
species of plants, including 600 endemics (Kelbessa and Demissew, 
2014; Demissew et al., 2021). Much of the biodiversity finds its con-
centration in the Ethiopian Highlands (Fashing et al., 2022). However, 
the diverse ecosystems and biodiversity are facing threats from climate 
change (Fashing et al., 2022). 

The effects of climate warming are causing geographic shifts among 
species in Ethiopia (Semu et al., 2021). It is crucial to study where 
different species might shift as the climate changes, in order to minimize 
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the associated impacts. Researchers (e.g., Abrha et al., 2018; Beaumont 
et al., 2011) are actively working on understanding the diverse impacts 
of climate change on the geographic shift of various plant and animal 
species. 

Global climate models (GCMs) from various phases of the Coupled 
Model Intercomparison Project have been central to climate change 
studies (Su et al., 2021). The Collaborative Framework for Comparing 
Coupled Models, known as the Coupled Model Intercomparison Project 
(CMIP), was established in 1995 by the Working Group on Coupled 
Modeling (WGCM) under the World Climate Research Programme 
(WCRP). Its primary objective is to advance the understanding of his-
torical, current, and future climate changes by comparing how models 
respond to various standardized forcings and scenarios. CMIP has 
evolved into a crucial resource for the Intergovernmental Panel on 
Climate Change (IPCC) and various international and national climate 
assessments (Meehl et al., 2000; Eyring et al., 2016). 

GCM-based predictions play a crucial role in developing early 
warning systems (Parmesan et al., 2011; Pereira et al., 2010) for sus-
tainable forest management as forests provide ecosystem services. The 
Intergovernmental Panel on Climate Change (IPCC) through the 
Coupled Model Intercomparison Project (CMIP) adopts different 
greenhouse gas concentration trajectory in climate change projection 
studies. Over the past years, the Representative Concentration Pathways 
(RCPs, van Vuuren et al. 2011) adopted in the fifth assessment report 
(AR5) of the IPCC have been applied for species distribution modeling 
and predicting climate trends. The recent IPCC’s sixth Assessment 
Report (AR6), Coupled Model Intercomparison Project Phase 6 (CMIP6) 
climate model datasets have been utilized. CMIP6 model includes a set 
of new emission scenarios driven by shared socioeconomic pathways 
(SSPs, Riahi et al. 2017), which are important for predicting species 
distribution (Zhou et al., 2021). This study used the SSPs sourced data 
from average of ensemble GCMs within the framework of CMIP6. 

Forests play an important role in the ecosystem (Brashears et al., 
2004). For instance, they function as significant carbon reservoirs, 
storing substantial quantities of carbon within their biomass and soil 
(Pan et al., 2011). Plants, including trees, absorb atmospheric carbon 
dioxide and sequester it in both Above Ground Biomass (ABG) and 

Belowground Biomass (BGB) (Izaurralde et al., 2012). This leads to the 
need to determine the amount of carbon that various types of plants can 
store. As a result, this study is conducted to modeling the distribution 
and carbon storage dynamics of Acacia abyssinica, Carissa edulis, and 
Juniperus procera under climate change within the Hugumbrda 
Grat-Kahsu national forest. These particular species were chosen due to 
their elevated importance value index within the forest ecosystem. 

Acacia abyssinica belongs to the family Fabaceae (Leguminoseae) and 
the sub-family Mimosodeae. It is primarily found in afromontane areas 
and is extensively used for soil and landscape conservation and resto-
ration due to its ability to improve degraded soils (Negash, 1993). It is a 
leguminous tree capable of nitrogen fixation, thereby enhancing soil 
fertility (Degefu et al., 2011; Negash, 1993). Juniperus procera, 
commonly known as the African pencil cedar, belongs to the family 
Cupressaceae. It is predominantly found in mountainous areas (Friis, 
1992; Negash, 1993). This species serves various purposes such as pencil 
production, construction, furniture, joinery, and ecological restoration 
(Friis, 1992; Negash, 1993; Orwa et al., 2009). Carissa edulis, classified 
in the family Apocynaceae, is a shrub species that bears edible fruits. 
Moreover, it is employed for soil and water conservation, ecological 
functions, and fuelwood. Different chemical compounds have been 
extracted from this species (Al-Youssef et al., 2014). However, studies on 
the distribution of species and their carbon stock potential under climate 
change are not well-studied, especially in the context of the latest 
emission scenarios (SSP). 

Hence, this research was designed to achieve four primary objec-
tives. Firstly, it aimed to model the impact of climate change on the 
distribution of three specific species. Secondly, it aimed to detect current 
and future suitable and unsuitable areas for the selected species. Thirdly, 
the research aimed to investigate the carbon dynamics and responses of 
these selected species to climate change. Lastly, the study identified and 
analyzed the environmental variables that play a significant role in 
shaping the distribution patterns of the studied species. 

Fig. 1. Map of the study area, where the study forest is denoted by a green-colored area. The map also includes elevation classes and land use/land type classes of 
present within the forest. 
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2. Methodology 

2.1. Study area description 

Hugumbrda Grat-Khassu National Forest is located in the southern 
zone of Tigray, about 160 km south of Mekelle, the capital of the Tigray 
region of Ethiopia. The forest founds in the OFla, Raya Alamata, Raya 
Azebo, and Endamohoni districts of the Tigray region. Its geographical 
coordinates range between latitude 12◦25′11.564"N and 
12◦44′29.025"N and longitude 39◦28′11.262"E and 39◦37′28.411"E. The 
forest covers an elevation range of 1501 to 3683 m above sea level (m.a. 
s.l.) and is classified as a dry evergreen Afromontane Forest. It includes 
both midland and highland altitudinal classes (Fig. 1). The area is 
characterized by rough and hilly landscape. The predominant soil types 
are Vertisol, leptosoil, and cambosols. The annual average rainfall in the 
forest varies from 653 to 818.6 mm, while mean maximum temperatures 
range from 21.4 to 30 ◦C. The average minimum temperature in the 
forest ranges between 9.4 and 14.8 ◦C (Abrha et al., 2023). Lake 
Hashenge, a highland lake with no outlet, is found within the forest. It is 
about 5 km in length and 4 km in width, reaching a maximum depth of 
25 m (Tsegay, 2017). 

The forest area is composed of plantation forests, natural forests, 
bushes, shrubs, agricultural fields, and settlement areas (Kidane et al., 
2018). The land use types found in the forest area include forest land, 
grassland, lake, settlement, and agricultural land (Fig. 1). The total 
population within and around the forest amounts to 26,889 households, 
with 5,496 households located entirely within the forest area and the 
remaining 21,393 households residing in the surrounding areas (Wol-
demichael et al., 2010). The local farming practices mainly involve 
mixed farming systems. Key food crops cultivated include Zea mays, 
Sorghum bicolor, Triticum durum, Eragrostis tef, Hordeum vulgare, Pisum 
sativum, and Cicer arietinum. Additionally, valuable tree crops like 
Mangifera indica, Persea americana, Carica papaya, and Malus domestica 
are grown. The main livestock species raised are cattle, sheep, goats, 
donkeys, horses, mules, and camels (Gebru et al., 2019). 

2.2. Input data sets 

The study used various input datasets from satellite images and 
ground-based experimental designs for forest measurements. Those data 
sets were used for predicting the distribution of three woody plant 
species under current and projected climate conditions using the 

Maximum Entropy Model (Maxent 3.4.4). Future climate data from 
ensemble General Circulation Models (GCMs) for different time periods 
were used for an ensemble approach to reduce model uncertainty. This 
study includes current climate data from WorldClim version 2.1 ranging 
from 1970 to 2000 and future data from CMIP6 from 2021 to 2100. 

Elevation data was sourced from the WorldClim database, and soil 
data from SoilGrid was also used due to their influence on species dis-
tribution. The soil data considered were silt, clay, and sand percentages 
at a depth of 15–30 cm. The study employed an experimental design 
involving 188 plots to collect occurrence data and species structure. 

2.2.1. Climate data 
Maximum Entropy Model (Maxent 3.4.4), an ecological niche model 

was used to predict the distribution of three woody plant species under 
both current and projected climate conditions. The future climate data 
were acquired from four General Circulation Models (GCMs) for distinct 
periods: 2021-2040, 2041-2060, 2061-2080, and 2081-2100. The study 
used an ensemble of climate models, including the Australian Commu-
nity Climate and Earth System Simulator-Coupled Model 2 (ACCESS- 
CM2), Hadley Global Environment Model 3-Global Coupled 31-Low 
Resolution (HadGEM3-GC31-LL), Model for Interdisciplinary Research 
On Climate 6 (MIROC6), and Max Planck Institute Earth System Model 
1-2-High Resolution (MPI-ESM1-2-HR) GCMs. These models were 
selected for ensemble due to their good performance in Ethiopian 
research studies: ACCESS-CM2 and MPI-ESM1-2-HR (Gebresellase et al., 
2022), HadGEM3-GC31-LL, MPI-ESM1-2-HR, MIROC6 (Berhanu et al., 
2023), and MPI-ESM1-2-HR (Rettie et al., 2023). Ethiopia, like other of 
African countries, lacks its own calibrated General Circulation Model 
(GCM). As a result, an ensemble of various models was applied in the 
study. 

The ensemble of these four GCMs was employed to address the un-
certainty and limitations of a single global climate model in accurately 
projecting future climate trends (Bağçaci et al., 2021). The multi-model 
ensemble approach has developed as the most important method to 
mitigate model uncertainty, as stated by numerous studies (Wu et al., 
2018; Feng et al., 2010). Arithmetic mean has been widely applied to 
ensemble multiple models. In the case of arithmetic averaging, ArcGIS 
was used, integrating the GCMs with equal weighting (Her et al., 2019; 
Ferro et al., 2013). The utilization of an ensemble of models in the 
modeling process supports to produce more accurate predictions (Wu 
et al., 2018). 

The current climate data has been extracted from WorldClim version 
2.1. Within the framework of the WorldClim version 2.1 dataset, the 
climate data has been structured to encompass the temporal range 
spanning from 1970 to 2000, in addition the future is from 2021 to 2100 
(Fick and Hijmans, 2017). Both current and future datasets were at a 
resolution of 30 s (~1 km2) accessed from worldclim. The future climate 
data were sourced from the CMIP6, demonstrating both qualitative and 
quantitative enhancements compared to earlier CMIP phases like 
CMIP5. These improvements encompass a better representation of 
physical processes, simulated fields, and a higher spatial resolution 
(Gebresellase et al., 2022). Moreover, when contrasted with CMIP5, 
CMIP6 shows better perform better (Zhang et al., 2023). CMIP6 shows 
improvements in resolution, leading to more significant findings (Di 
Luca et al., 2020; Srivastava et al., 2020). 

The five "families" of SSP-based scenarios used in CMIP6 can be 
categorized along two broad axes: challenges to mitigation and chal-
lenges to adaptation. SSP1 (Sustainability) has low challenges to both 
mitigation and adaptation. In this scenario, policies focus on human 
well-being, clean energy technologies, and the preservation of the nat-
ural environment. In contrast, SSP3 (Regional Rivalry) is characterized 
by high challenges to both mitigation and adaptation. In this scenario, 
nationalism drives policy, and the focus is placed on regional and local 
issues rather than global ones. SSP4 (Inequality) is defined by high 
challenges to adaptation and low challenges to mitigation, while SSP5 
(Fossil-fueled Development) is characterized by high challenges to 

Table 1 
Environmental variables used as predictors.  

Code Bioclimatic variables Code Bioclimatic variables 

Bio01 Annual Mean Temperature Bio13 Precipitation of Wettest 
Month 

Bio02 Mean Diurnal Range Bio14 Precipitation of Driest 
Month 

Bio03 Isothermality Bio15 Precipitation Seasonality 
Bio04 Temperature Seasonality Bio16 Precipitation of Wettest 

Quarter 
Bio05 Max Temperature of Warmest 

Month 
Bio17 Precipitation of Driest 

Quarter 
Bio06 Min Temperature of Coldest 

Month 
Bio18 Precipitation of Warmest 

Quarter 
Bio07 Temperature Annual Range Bio19 Precipitation of Coldest 

Quarter 
Bio08 Mean Temperature of Wettest 

Quarter 
Altitude Elevation 

Bio09 Mean Temperature of Driest 
Quarter 

Silt Percent silt 

Bio10 Mean Temperature of Warmest 
Quarter 

Sand Percent sand 

Bio11 Mean Temperature of Coldest 
Quarter 

Clay Percent clay 

Bio12 Annual Precipitation    
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mitigation and low challenges to adaptation. 
SSP2 (Middle of the Road) represents moderate challenges to both 

mitigation and adaptation (Meinshausen et al., 2020; O’Neill et al., 
2020). To examine the trend, two SSPs were selected: SSP2-4.5 and 
SSP5-8.5. These two SSPs were selected to simulate the distribution of 
the three species under future climate conditions. They were chosen 
because they represent both a moderate and an extreme emission sce-
nario, as well as various mitigation and adaptation strategies. This 
choice was made to examine both a “Middle of the Road” and a “Fos-
sil-fueled development” scenario, capturing the two extremes when 
compared to the current adaptation and mitigation activities. 

2.2.2. Elevation 
While climate data has as a significant contribution in species dis-

tribution modeling (Van der Putten et al., 2010), it is known that 
elevation can also have influence on species distribution (Sekercioglu 
and Schneider, 2008). Studies (e.g., Luoto and Heikkinen 2008; Virk-
kala et al. 2010) recommend that the accuracy of predicted species 
ranges can remarkably improve with the inclusion of elevation data. 
Consequently, elevation data was integrated. Altitude data with the 
same resolution as the climate data were sourced from the WorldClim 
database and applied (Table 1). 

2.2.3. Soil data 
MaxEnt can incorporate topographic, climatic, soil, and other vari-

ables. The inclusion of soil data is important, as the absence of soils in 
models can lead to an overestimation of future habitat suitability for 
many plant species (Zuquim et al., 2020). The impacts of climate change 
on forest structure and distribution can vary along soil properties across 
a landscape (Levine et al., 2016). Soils may support species establish-
ment through factors like nutrient availability (Tuomisto et al., 2016), 
water retention properties (Schietti et al., 2014), root growth and others. 
If soils are unsuitable for a species, the area falls outside its niche 
tolerance and the probability of occurrence reduces, regardless of 

climatic conditions. Consequently, relying solely on climate-based 
ecological niche models is conceptually weak (Velazco et al., 2017) 
and their spatial predictions may lack reliability. The inclusion of soil 
variables has an impact on the size and shape of predicted suitable areas, 
particularly in future models (Zuquim et al., 2020). As a result, this 
study was run using climate data, elevation and soil data. 

The ISRIC (International Soil Reference Information Centre) World 
Soil Information released a Global Soil Information system known as 
"SoilGrids," which was employed to obtain soil attributes such as the 
percentage of silt, clay, and sand at a depth of 15–30 cm (Table 2). The 
soil map had an initial resolution of 250 m and was subsequently 
resampled to 1km to achieve a consistent cell size with the worldclim 
data. Soil texture was chosen because it influences soil biophysical 
properties, such as soil porosity, bulk density, and hydraulic conduc-
tivity (Upadhyay and Raghubanshi, 2020). Soil texture strongly affects 
soil functions and water and nutrient availability (Khalil et al., 2015). 
Many scientists consider soil texture the most important soil property, as 
it can impact soil-water relationships, gas exchange, and plant nutrition 
(Ritchey et al., 2015), as well as soil biophysical properties (Martín 
et al., 2018). Therefore, using the percentages of soil texture is essential 
for determining soil suitability. 

2.2.4. Experimental design 
A total of 188 plots were established to collect occurrence points and 

structure of the species. These plots were arranged with a horizontal 
interval of 250 m between transects and a vertical distance of 100 m 
between plots using systematic sampling. Systematic sampling is a 
widely employed technique in forest inventory applications, providing 
advantages in terms of precision and ease of implementation (McRo-
berts et al., 2016). It is positioned at regular intervals, with a fixed set of 
non-overlapping samples (Kershaw et al., 2016). The study involved 
placing linear transects within the forest area. These transects were 
systematically arranged, extending horizontally from east to west, thus 
offering comprehensive coverage across the forest’s width. Additionally, 
ground plots were established at regular intervals, running vertically 
from south to north of the study area. This intentional spatial arrange-
ment was designed to ensure an inclusive and representative sampling 
strategy. 

The Diameters of woody plant species were measured using both 
diameter tape and caliper at a height of 1.3 m above ground level, as 
well as the diameter at stump height at 30 cm. Heights were measured 
employing meter tape and clinometers. Trees exceeding 1 meter in 
length were subjected to measurement. Furthermore, the tree occur-
rence data, as well as tree height and diameter, were collected using 
circular plots with a radius of 11.28 m, which corresponds to an area of 
400 m2 (Fig. 2). 

Within the 37 transects of 188 plots, a total of 6,813 trees belonging 
to 42 woody species were recorded. Among the 42 species, three species, 

Table 2 
An error matrix used to evaluate the predictive accuracy of presence–absence 
models absence; d, number of cells for which absence was correctly predicted by 
the model.   

Validation test data 

Presence Absence 

Model Presence Number of cells for which 
presence was correctly 
predicted by the model (a) 

Number of cells for which the 
species was not found but the 
model predicted presence (b) 

Absence Number of cells for which 
the species was found but 
the model predicted absence 
(c) 

Number of cells for which 
absence was correctly 
predicted by the model (d)  

Fig. 2. Experimental design (The vertical distance between transects covers 250 meters from lower to higher, and the horizontal separation between plots is 100 
meters on either side). 
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namely Acacia abyssinica, Carissa edulis, and Juniperus procera, were 
chosen for this study due to their high importance values, with 600, 872, 
and 1,449 occurrences, respectively. The occurrence of the species were 
recorded using Geographic Positioning System (GPS). Those species had 
a high Importance Value Index (IVI) in the forest, with IVI values of 
26.41, 28.78, and 76.85 for the three species, respectively. 

2.3. Data analysis 

2.3.1. Model selection 
The Maxent model was chosen for the analysis due to its robustness 

in correlating environmental variables with species presence records, as 
described by Elith et al. (2011). This model is particularly effective when 
dealing with presence-only records (Elith et al., 2006; Phillips and Dudı 
ḱ, 2008). It is a machine-learning approach that utilizes presence data 
and environmental variables to generate estimated species distributions 
(Phillips et al., 2004). It has demonstrated excellent predictive perfor-
mance compared to other structured decision-making models (Pearson 
and Dawson, 2003; Elith et al., 2006). 

Maxent proves resilient to predictor collinearity during model 
training, and the exclusion of highly correlated predictor variables has 
minimal impact on model performance (Feng et al., 2019). It possesses 
the ability to manage model complexity by reducing the emphasis on 
redundant variables; the algorithm effectively handles collinearity is-
sues (Elith et al., 2011; Phillips and Dudík, 2008; Shcheglovitova and 
Anderson, 2013). Maxent achieves a balance between model fit and 
complexity through regularization (Elith et al., 2011), which means that 
the level of collinearity among predictors is not expected to have a 
substantial impact on Maxent. 

2.3.2. Model calibration and validation 
Model validation in this study involved dividing the occurrence 

points into two sections: 80% of the observed species data (training 
data) was used to calibrate the model, while the remaining 20 % (test 
data) served for model validation. Model prediction performance was 
evaluated using the area under the Receiver Operating Characteristic 
(ROC) curve of Area Under the Curve (AUC), True Skill Statistic (TSS), 
and Kappa statistic (Duan et al., 2014). 

The AUC metric is a widely used for assessing model accuracy and 
selection criteria (Braunisch et al., 2013; VanDerWal et al., 2009). The 
model accuracy was assessed using a threshold value for the AUC, which 
ranges from 0.5 to 1.0, serving as an indicator of level of model accuracy 
(Mbatudde et al., 2012). According to Thuiller et al. (2008), AUC 
thresholds are categorized as follows: AUC ≥ 0.9 (very good), 0.8 <
AUC < 0.9 (good), 0.7 < AUC < 0.8 (satisfactory), 0.6 < AUC < 0.7 
(unsatisfactory), and 0.5 < AUC < 0.6 (invalid). These thresholds assist 
in determining the accuracy and reliability of the model predictions. 

The True Skill Statistic (TSS) is another measure gaining acceptance 
for model evaluation (Konowalik and Nosol, 2021). Models generating 
presence-absence predictions are typically assessed by comparing pre-
dictions with a set of validation sites and constructing a confusion ma-
trix, recording true positive (a), false positive (b), false negative (c), and 
true negative (d) cases predicted by the model (Table 2). The TSS 

accounts for both omission and commission errors, as well as success 
resulting from random guessing, and ranges from -1 to +1, where +1 
indicates perfect agreement, and values of zero or less indicate perfor-
mance no better than random (Allouche et al., 2006). 

The Kappa statistic, another widely used measure, evaluates the 
performance of models generating presence-absence predictions. The 
Kappa statistic for agreement is derived from the optimal threshold that 
maximizes the information in the mixed matrix to gauge model perfor-
mance (Eq. 6). Evaluation criteria for the Kappa statistic are as follows: 
excellent (0.85–1.0), very good (0.7–0.85), good (0.55–0.7), fair 
(0.4–0.55), and fail (<0.4) (Duan et al., 2014). Generally, AUC, kappa, 
and TSS, based on sensitivity and specificity calculated from presence 
and absence records, are commonly used metrics for model performance 
(Allouche et al., 2006; Shabani et al., 2018). Therefore, this study also 
employed these three crucial parameters to evaluate model perfor-
mance. AUC was calculated by MaxEnt as the default measure, whereas 
Kappa and TSS were manually computed using Eqs, 1–6. 

n = a + b + c + d (1)  

Overall accuracy =
a + d

n
(2)  

Sensitivity =
a

a + c
(3)  

Specificity =
d

b + d
(4)  

TSS = sensitivity + specificity − − 1 (5)  

Kappa statistic =

(
a+d

n

)

−
(a+b)(a+c)+(c+d)(d+b)

n2

1 −
(a+b)(a+c)+(c+d)(d+b)

n2

(6)  

2.3.3. Environmental variables contribution 
All variables were run 20 times in the Maxent model to evaluate the 

individual contribution of environmental variables to species distribu-
tion. This analysis aimed to estimate the importance of each variable in 
explaining the species distribution. The percent contribution table pro-
vides understandings into the relative importance of each variable in 
explaining the species distribution. It quantifies the unique information 
that each variable contributes to the model. This analysis allows for the 
identification of key environmental variables that influence the 
ecological distribution of the species. 

2.3.4. Species suitability 
The Maxent technique generates continuous raster outputs repre-

senting habitat suitability, with values ranging between 0 and 1. To 
classify the maps, the 10th percentile value was applied to obtain and 
predict presence and absence projected maps. In this study, the maps 
produced by the model were classified based on a current suitable area 
using Diva GIS 7.5 and ArcGIS 10.1. ArcGIS 10.1 were used to classify 
the image and to extract suitability thresholds in point. Diva GIS were 
used for classification aimed to identify areas with high impact, areas 
outside the realized niche, low-impact areas, and new suitable areas. 
The classified maps based on suitability thresholds resulted in four 
distinct categories, each providing valuable insights into the potential 
impact of climate change on species distribution. The high-impact zone 
(Loss) represents areas that are currently suitable for species presence 
but are projected to become unsuitable in the future, indicating poten-
tial loss of habitat suitability. The zone outside the realized niche 
(Neutral) comprises areas that are currently unsuitable and will remain 
unsuitable for species presence in the future. 

On the other hand, the low-impact zone (Neutral) includes areas that 
are currently suitable and will continue to be suitable for species pres-
ence in the future. This suggests that these areas may serve as stable 

Table 3 
Overlaying maps and classification of potential area changes.  

Situation Potential area 

Future Current Result after 
subtracting 

Future suitability 
class 

High impact areas 0 1 -1 Unsuitable 
Outside of 

realized niche 
0 0 0 

Low impact areas 1 1 0 Suitable 
New suitable 

areas 
1 0 1  
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habitats that can support the persistence of species despite changing 
climatic conditions. Lastly, the new suitable zone (Gain) identifies areas 
that are currently unsuitable but are predicted to become suitable for 
species presence in the future. The four classifications were computed 
from each binary raster, which has two values: presence (1) and absence 
(0) (Table 3). By considering these zones, we gain a comprehensive 
understanding of the potential consequences of climate change on spe-
cies distributions and develop targeted strategies for domestication and 
management efforts. 

2.3.5. Carbon stock estimation and modeling 
Allometric equations were employed to estimate carbon stocks 

without the need for tree cutting, particularly in areas where protected 
tree species are present, as observed in the study area. These equations 
utilize measurements such as tree diameter at breast height (DBH), 
density, or a combination of DBH, height, and density to establish 
allometric relationships for estimating tree carbon stock. Therefore, an 
existing allometric equation was utilized to estimate carbon stocks, 
aiming to prevent deforestation and obey with regulations set by the 
relevant authorities, which prohibit tree cutting. Once the Above- 
Ground Biomass (AGB) was obtained, BGB, encompassing all live root 
biomass, was estimated at 20–26 % of the AGB (Handavu et al., 2021). In 
this study, a value of 25 % of the AGB was used to estimate the BGB. 
Total Biomass (TB) is the summation of AGB and BGB. For TCS esti-
mation, 50 % of the TB was taken into consideration (Brown, 1986). 
Other studies have also found that the carbon stock of tropical dry for-
ests makes up approximately 50 % of the biomass (Solomon et al., 2017; 
Ekoungoulou et al., 2014). 

The TCS potential of Carissa edulis was computed using a tailored 
allometric equation by Chave et al. (2014) for tropical dryland envi-
ronments (Eq. 7). For Juniperus procera and Acacia abyssinica, specific 
models developed in Ethiopia were used, attributed to Gereslassie et al., 
2019 (eqn 8), and Solomon et al., 2017 (Eq. 9), respectively. 

AGB = 0.0673 ∗
(
WD ∗ DBH2 ∗ H

)0.976 (7)  

AGB = 0.348DBH0.57H0.032 (8)  

AGB = 0.55 ∗ DBH1.89 + 0.74 ∗ H2.15 (9)    

○ Where: AGB = above ground biomass (in kg dry matter)  
○ WD = wood density (0.6 g/cm3), which is average of wood density 

for all species.  
○ DBH = diameter at breast height (in cm)  
○ H = total height of the tree (in m) 

In order to analyze the future impact of climate change, the TCS of 
trees was used as the current amount by assuming that both current and 
future suitable areas may produce the same size of carbon, which is 
Business As Usual (BAU) scenarios. This scenario was based on the 
principle that the future suitable area for these species would support a 
similar number TCS as their current suitable area. The TCS was multi-
plied by the projected suitable area to project the future TCS. This 
approach mirrors how the current TCS is derived by multiplying the 
current TCS by the current suitable area in square kilometers. Similar 
studies have been undertaken by Goswami et al. (2014), Wang et al. 
(2022) and Pechanec et al.(2018). 

2.3.6. Statistical analysis 
To compare the potential distribution in both current and future 

raster maps, which were obtained from MaxEnt output, points were 
extracted using ArcGIS. These extracted points were then converted to 
Excel format to ensure compatibility for statistical analysis using SPSS 
version 20 software. The transition from the current state to the future 
was analyzed in time slices based on the SSP2-4.5 and SSP5-8.5 sce-
narios, using the nonparametric statistical method. Furthermore, the 
magnitude of suitability was also compared using the same statistical 
approach. 

3. Result and discussion 

3.1. Model accuracy 

The model result showed excellent performance in accurately 
describing the distribution of Acacia abyssinica, Carissa edulis, and 
Juniperus procera, with mean training and test AUC values of 0.99. All 
runs for the three species produced AUC values exceeding 0.9, indicating 
high accuracy. In addition, TSS values for all three species exceeded 
0.75, and the Kappa values were each greater than 0.85 (Fig. 3). 
Therefore, the model performance was excellent, and the results of the 
model are acceptable. 

3.2. Suitability thresholds 

The suitability thresholds for each specie were determined. The 
Juniperus procera had a threshold of "suitable 0.37 < P < 1 and unsuit-
able 0 < P < 0.37," Carissa edulis had a threshold of "suitable 0.46 < P <
1 and unsuitable 0 < P < 0.46," and Acacia abyssinica had a threshold of 
"suitable 0.42 < P < 1 and unsuitable 0 < P < 0.42." All of these suit-
ability thresholds were found to be statistically significant for species 
distribution classification at p < 0.05, based on the 10th percentile 
training presence. The suitability percentage and the impact of the area 

Fig. 3. Model accuracy assessment (All values for TSS (True Skill Statistic), Kappa, and AUC (Area Under the Curve) exceed 0.7).  
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on habitat suitability were assessed based on the total area of the study 
area, which is 369 km2. 

Furthermore, a significant difference (p < 0.05) was observed be-
tween the suitability values of current and future time slices under the 
two SSPs (Table 4). The mean suitability value of SSP2-4.5 showed a 
higher magnitude compared to the current value. The average suitability 
value of SSP5-8.5 indicates a notably higher magnitude for the future, 
exceeding the current suitability thresholds. 

3.3. Contribution of variables 

Temperature seasonality, altitude and precipitation of warmest 
quarter are top three predictors, each making good contributions on the 
species distribution. The soil texture have contribution on the species 
distribution (Fig. 4). These findings highlight the contribution of 
topography, soil and climate variables in shaping the distribution pat-
terns of the studied species. 

For Acacia abyssinica, the environmental variable with the highest 
gain when used in isolation is bio18, indicating that it contains the most 
useful information on its own. On the other hand, altitude has the most 
significant impact on reducing the gain when omitted, suggesting it 
provides unique information not present in the other variables. Simi-
larly, for Carissa edulis, the environmental variable with the highest gain 
in isolation is also bio18, indicating that it contains the most useful in-
formation on its own. In addition, bio16 shows the greatest reduction in 
gain, indicating that it contributes distinct information not found in the 
other variables. In the case of Juniperus procera distribution, the 

Table 4 
Magnitude of distribution thresholds in different time slices and SSP.  

Period Acacia abyssinica Carissa edulis Juniperus procera 

Maximum Mean Maximum Mean Maximum Mean 

Current 0.76 0.35 0.80 0.45 0.78 0.43 
2021- 

2040SSP2- 
4.5 

0.98 0.70 0.98 0.85 0.98 0.83 

2021- 
2040SSP5- 
8.5 

0.95 0.52 0.98 0.71 0.98 0.69 

2041- 
2060SSP2- 
4.5 

0.98 0.93 0.98 0.97 0.98 0.97 

2041- 
2060SSP5- 
8.5 

0.97 0.62 0.98 0.80 0.98 0.79 

2061- 
2080SSP2- 
4.5 

0.97 0.69 0.98 0.80 0.98 0.80 

2061- 
2080SSP5- 
8.5 

0.98 0.64 0.98 0.79 0.98 0.79 

2081- 
2100SSP2- 
4.5 

0.98 0.80 0.98 0.91 0.98 0.91 

2081- 
2100SSP5- 
8.5 

0.98 0.67 0.98 0.72 0.98 0.75  

Fig. 4. Contribution of environmental variables on (a) Acacia abyssinica, (b) Carissa edulis, and (c) Juniperus procera distribution (Bio4 makes the most significant 
contribution). 

Table 5 
Distribution of the species in SSP2-4.5 (in % and in km2) relative to the total area of the study, which is 369 km2.  

Period Potential distribution %(km2) New suitable area %(km2) 

Acacia abyssinica Carissa edulis Juniperus procera Acacia abyssinica Carissa edulis Juniperus procera 

Current 42.9(158) 54.2(200) 63.8(235)    
2021-2040 78.8(291) 94.1(347) 94.9(350) 46(170) 44.9(166) 46.3(171) 
2041-2060 99.2(366) 100(369) 99.7(368) 68.9(254) 52(192) 55.6(205) 
2061-2080 79.7(294) 89.5(330) 91.8(339) 46.3(171) 41(151) 42.4(156) 
2081-2100 77.1(284) 97.7(361) 98.6(364) 54(199) 49.4(182) 52.3(193)  
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environmental variable with the highest isolated gain remains bio18, 
signifying its standalone significance. Furthermore, altitude stands out 
as the variable that leads to the most substantial reduction in gain upon 
omission, indicating that it carries unique information absent from the 
other variables. Hence, similar with other studies, it is important to note 
that in addition to climate, elevation has an influence on species dis-
tribution as well (Sekercioglu and Schneider, 2008) and soil also plays a 
role in species distribution (Schietti et al., 2014). 

3.4. Species distribution 

All three species, Juniperus procera, Acacia abyssinica, and Carissa 
edulis, were found at different altitudes, identified in both midland and 
highland areas of the study. In the case of Juniperus procera, it would 
reach up to 3660 m.a.s.l, the maximum altitude of the study area under 
current and future both SSPs. The observed geographical expansion is a 
response to the adaptation to a more suitable climate at higher altitudes. 
This is notable, particularly considering that these species are primarily 
found in mid-elevation, and the presence of a larger area of high 
elevation contributes to their distribution in these regions. 

Due to climate change impacts, different species are showing shifts in 
their altitudinal distributions and elevation ranges (Wilson et al., 2005). 
Research suggests that most non-native plant species in mountains are 
initially introduced at low elevations and then spread upwards to fill 
their climatic niche (Alexander et al., 2011). This leads to the prediction 
that, over time and under stable climatic conditions, upward range shifts 
will be most pronounced for non-native species initially found at low 
elevations. Global warming could contribute to accelerating upward 
shifts, even at high elevations (Wolf et al., 2016). The study area, being 
mountainous with different climate conditions (Abrha et al., 2023), is 
suitable for lowland and midland species. These species are predomi-
nantly found at mid-elevations rather than high elevations. In response 
to rising temperatures, species may shift their ranges towards higher 
elevations in search of suitable climatic conditions to which they are 
adapted (Couet et al., 2022). 

Habitat availability disproportionately amplifies climate change 
risks for lowland species compared to mountainous ones (Hülber et al., 
2020). While some studies have found instances of species migrating up 
in elevation to stay within their suitable climate, the situation is complex 
and varies depending on the species, model resolution, and climate 
forcing (Maxwell et al., 2020). The current study species are primarily 
located in the midland, and the highland represents a significant op-
portunity for their future suitable area. 

The current distribution of Acacia abyssinica accounts for 42.9 % of 
an area of 369 km2 and is projected to expand to a range of 77.1–99.2 % 
from the 369 km2 in SSP2-4.5 for the period 2021–2100, with a potential 
new suitable area ranging from 46 % to 68.9 %. Carissa edulis presently 
covers 54.2 % of its potential distribution from the 369 km2, with a 
projected expansion to 89.5–100 % in SSP2-4.5 from 2021–2100, and 
the possibility of a new suitable area ranging from 41 % to 52 %. Juni-
perus procera’s current distribution is at 63.8 %, and there is potential for 
expansion to 91.8–99.7 % in SSP2-4.5 from 2021-2100. The future 
projection indicates a new suitable area ranging from 42.4 % to 55.6 % 
from the 369 km2 in SSP2-4.5 for the period of 2021–2100 (Table 5). 

The distribution range of Acacia abyssinica in SSP5-8.5 for the period 
2021–2100 might extend from 63.8 % to 72.9 % from the total area of 
369 km2. Furthermore, there is the possibility of a new suitable area 
covering 29.7 % to 40.7 % from the total area of 369 km2. In the case of 
Carissa edulis, its potential distribution in SSP5-8.5 from 2021–2100 may 
expand to a range of 77.1 % to 87.9 %, with the potential for new 
suitable areas ranging from 27.4 % to 37.9 %. Similarly, for Juniperus 
procera, its distribution could potentially expand to a range of 78 % to 
88.1 %. Its new suitable area might occur, potentially ranging from 29.4 
% to 39 % from the total area of 369 km2 in SSP5-8.5 for the period 

Table 6 
Distribution of the species in SSP5-8.5 (in % and in km2) relative to the total area of the study, which is 369 km2.  

Period Potential distribution (%) New suitable area (%)  

Acacia abyssinica Carissa edulis Juniperus procera Acacia abyssinica Carissa edulis Juniperus procera 

Current 42.9(158) 54.2(200) 63.8(235)    
2021-2040 63.8(235) 77.1(284) 78(288) 29.7(110) 28(103) 29.4(108) 
2041-2060 72.9(269) 87.9(324) 88.1(325) 39.3(145) 37.9(140) 39(144) 
2061-2080 70.9(262) 86.4(319) 88.1(325) 40.1(148) 36.2(134) 37.9(140) 
2081-2100 64.4(238) 77.1(284) 81.4(300) 40.7(150) 27.4(101) 33.3(123)  

Fig. 5. Acacia abyssinica distribution (a) Current (b) 2021-2040 SSP2-4.5 (c) 
2041-2060 SSP2-4.5 (d) 2061-2080 SSP2-4.5 and (e) 2081-2100 SSP2-4.5. 
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2021-2100 (Table 6). 
The model prediction maps shown that considerable changes in the 

projected distribution of Juniperus procera, Acacia abyssinica, and Carissa 
edulis in the future, as compared to their current distribution. Our 
findings emphasize a significance increase (p < 0.05) in the distribution 
of these species under future climatic conditions, especially in the sce-
nario of SSP2-4.5 when compared with the current (Figs. 5–10 and 
Table 5). 

The "high impact" and "low impact" areas shown minimal change, 
while the "new suitable area" and "area outside of realized niche" have 
more changes when compared with current situation. Among the three 
species, Juniperus procera demonstrates a more suitable area in the 
current, SSP2-4.5, and SSP5-8.5 scenarios, maintaining elevation sta-
bility at 3660 m.a.s.l. In comparison, Carissa edulis showcases a more 
suitable range than Acacia abyssinica across the current, SSP2-4.5, and 
SSP5-8.5 conditions, projecting an elevation range from 2928 m.a.s.l 
(current) to 3568 m.a.s.l (future). Meanwhile, Acacia abyssinica distri-
bution elevation rises from 2959 m.a.s.l in the current to 3576 m.a.s.l in 
the future and might contain more new suitable areas compared to the 
other species. This shows the altitudinal expansion of the species in 

order to adapt the impact of climate change. 
In line with our study, climate is pushing species to their ecological 

limits, resulting in significant shifts in their geographical ranges. Under 
the influence of climate change, species are adapting by shifting and 
resizing their ranges, primarily migrating towards higher elevations to 
locate suitable habitats (Scheffers et al., 2016). Additionally, highland 
areas have the potential to play a crucial role in protecting biodiversity 
in the face of climate change. This is because they act as thermal buffers, 
mitigating the effects of warming and creating cooler microclimates 
(Hoffmann and Beierkuhnlein, 2019). This suggests that, due to climate 
change, lowland and midland species may be capable of shifting their 
geographic ranges to higher elevations, enabling them to find more 
suitable habitats. Conversely, species in highland areas are currently 
more vulnerable to the effects of climate change. Additionally, species 
from lower elevations are on the rise in mountain areas, resulting in 
more homogeneous vegetation and increasing risks for mountain-top 
species (Adler et al., 2022). 

Different evidences supports the consistent trend of numerous spe-
cies altering their distribution ranges to higher elevations, a phenome-
non observed in studies by Ramalho et al. in 2020 and Charney et al. 

Fig. 6. Acacia abyssinica distribution (a) Current (b) 2021-2040 SSP5-8.5 (c) 2041-2060 SSP5-8.5 (d) 2061-2080 SSP5-8.5 and (e) 2081-2100 SSP5-8.5.  
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(2021). This trend indicates a broad response to climate change, with 
species gravitating towards higher habitats. The phenomenon of eleva-
tion shifts has been acknowledged as a direct response to climate 
warming, as noted by Chen et al. in 2021 and Mamantov et al. (2021). 
This implies that higher elevations could increasingly become favorable 
zones for species distribution in the future. Within our study area, both 
midland and highland areas show diverse climate trends projected for 
the future (Abrha et al., 2023). Consequently, these fortunate species 
possess potential habitats in both midland and highland zones, sug-
gesting a promising future. The area may remain suitable for species 
survival until 2100; however, comprehensive investigation beyond that 
timeframe is warranted to establish the area’s long-term suitability. 

3.5. Carbon stock estimation and modeling 

The average total carbon stock per single tree was estimated to be 
25.66 kg for Acacia abyssinica, 4.53 kg for Carissa edulis, and 94.59 kg for 
Juniperus procera. Based on these values, the total carbon stock potential 
per hectare was calculated to be 1.69 tons for Acacia abyssinica, 0.46 
tons for Carissa edulis, and 13.81 tons for Juniperus procera, or 

equivalently 169 tons, 46 tons, and 1381 tons per square kilometer. 
Considering the results obtained from Maxent simulations of po-

tential suitable areas, the carbon stock trends for each species, consid-
ering different time periods and climate scenarios (SSP2-4.5 and SSP5- 
8.5), reveal a similar pattern of increase. The carbon stock of Acacia 
abyssinica might rises from 25,688 tons to 59,319 tons when comparing 
the current and future periods, respectively. It is projected to add an 
additional 41,236 tons of carbon stock in the newly suitable areas in the 
future. Carissa edulis is also predicted to experience an increase from 
8,832 tons to 16,284 tons, with an additional carbon stock of 8,464 tons 
from the newly suitable areas. Similarly, Juniperus procera’s carbon stock 
is expected to grow from 312,106 tons to 487,493 tons when comparing 
the current and future periods. Additionally, a substantial 272,057 tons 
of carbon stock is projected to accumulate from the newly suitable areas 
in the future under the SSP2-4.5 scenario (Table 7). 

Under the SSP5-8.5 scenario, similar to SSP2-4.5, the carbon stock of 
Acacia abyssinica is projected to increase to 43,602 tons. Moreover, 
taking into account the areas that will become suitable in the future, it is 
estimated that a cumulative carbon stock of around 24,336 tons could be 
accumulated. Comparing the carbon stock of the current suitable area 

Fig. 7. Carissa edulis distribution (a) Current (b) 2021-2040 SSP2-4.5 (c) 2041-2060 SSP2-4.5 (d) 2061-2080 SSP2-4.5 and (e) 2081-2100 SSP2-4.5.  
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and the future new suitable area, they are nearly identical at 25,688 tons 
and 24,336 tons respectively. This emphasizes the significant potential 
of the future suitable area for Acacia abyssinica. Similarly, for Carissa 
edulis, the carbon stock is anticipated to rise to 14,306 tons in the future, 
with an additional 6,164 tons of carbon stock from the new suitable 
areas. The carbon stock of Juniperus procera is also expected to increase 
to 430,872 tons in the future, with the new suitable areas contributing 
an additional 190,578 tons of carbon stock in the future (Table 8). 

In comparison, the carbon stock is projected to be higher in the 
future under both climate scenarios for all three species. This highlights 
the need for human-assisted plantation of these species within their 
current and potential suitable areas in order to enhance the ecosystem 
services of the species. The optimal scenario for suitable area and po-
tential carbon stock is projected to be between 2041 and 2060 under the 
SSP2-4.5 climate scenario. The overall carbon stock of Juniperus procera 
surpasses that of both Carissa edulis and Acacia abyssinica. Similarly, the 
carbon stock associated with Acacia abyssinica is greater than that of 
Carissa edulis. 

The results align with previous findings where the highest carbon 

stocks (67.4 %) were observed in Juniperus procera, with a combined 
AGB and BGB of 35.3 tons per hectare in Kibate Forest near Wonchi 
Crater Lake, located in the Central Highland of Ethiopia (Meragiaw 
et al., 2021). This highlights that, on average, Juniperus procera stands 
out for its significant CO2 sequestration capacity per tree as this study. 
Similarly, the AGB of Juniperus procera was estimated at 26.77 ± 2.6 kg 
per tree, while that of Acacia abyssinica was calculated as 17.68 ± 3.32 
kg per tree in Tigray, Ethiopia (Solomon et al., 2017). Moreover, the 
aboveground carbon stock of Carissa spinarum was reported as 0.15 tons 
per hectare, while Juniperus procera showed a higher value of 78.68 tons 
per hectare in Chilimo-Gaji Forest, Ethiopia (Siraj, 2019). Additionally, 
estimates indicated that the AGB of Acacia abyssinica amounted to 25.4 
tons per hectare in a managed exclosure in Tigray, Ethiopia (Giday et al., 
2013). These findings illustrate the diverse carbon sequestration ca-
pacities of different species, with Juniperus procera being a more sig-
nificant contributor to carbon capture and storage. 

Carbon stock modeling serves a crucial role in predicting the impact 
of climate change on carbon storage within different ecosystems 
(Pechanec et al., 2018). This predictive capability is essential for 

Fig. 8. Carissa edulis distribution (a) Current (b) 2021-2040 SSP5-8.5 (c) 2041- 
2060 SSP5-8.5 (d) 2061-2080 SSP5-8.5 and (e) 2081-2100 SSP5-8.5. 

Fig. 9. Juniperus procera distribution (a) Current (b) 2021-2040 SSP2-4.5 (c) 
2041-2060 SSP2-4.5 (d) 2061-2080 SSP2-4.5 and (e) 2081-2100 SSP2-4.5. 
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developing adaptation strategies aimed at mitigating climate change 
effects. Tree carbon stock modeling is integral to the formulation of 
climate change mitigation plans. By projecting potential future carbon 
stocks, these models assist policymakers and land managers in identi-
fying areas with high carbon sequestration potential, guiding the 
implementation of practices like afforestation and reforestation to 
enhance carbon storage (Ma et al., 2021). This modeling approach also 
enables the estimation of carbon stock potential across diverse species. 
This knowledge aids in understanding tree species with substantial 

carbon storage capacity that can effectively contribute to climate change 
mitigation efforts (Kaul et al., 2010). 

3.6. Implications of the study 

The model’s accuracy is evident through its excellent performance, 
indicated by high AUC, TSS, and Kappa values. This high precision en-
ables reliable predictions of species distribution, underscoring the 
model’s effectiveness in projecting the ecological distribution of the 
selected tree species. The study underscores the significance of various 
environmental variables in influencing the distribution patterns of the 
studied species. Identifying these contributing variables is essential for 
evaluating their impact on species survival and distribution. Gaining an 
understanding of the relative importance of these variables provides 
valuable insights into the ecological requirements of the species and 
their responses to environmental factors. This study holds significant 
implications for understanding the potential effects of climate change on 
tree species distribution and carbon storage. By modeling the distribu-
tion and carbon stock of Acacia abyssinica, Carissa edulis, and Juniperus 
procera under climate change, the research provides insights into how 
these species might react to forthcoming climate change. This knowl-
edge is instrumental in shaping conservation and management strategies 
aimed at mitigating the adverse impacts of climate change on these 
ecologically crucial species. 

The observed shifts in latitudinal, altitudinal distributions, and 
elevation ranges due to climate impacts emphasize the need for con-
servation efforts to adapt to these changes. Implementing a conservation 
strategy is important for ensuring the survival of species across diverse 
geographic areas. This strategy contains in situ and ex-situ conservation, 
as well as human-assisted migration techniques. As trees are immobile 
and unable to migrate on their own, human-assisted plantation becomes 
a critical strategy for conserving tree species in the face of climate 
change. Planting trees in their predicted future suitable habitats allows 
for the proactive adaptation of ecosystems to changing climate condi-
tions. Actively involving local communities in conservation efforts and 
raising public awareness and education about biodiversity conservation 
are crucial measures for effective conservation. The implementation of 
human-assisted migration involves a careful scientific assessment, 
identifying suitable habitats and considering species adaptability and 
potential ecological impacts. Collaboration among conservation experts, 
government agencies, organizations, and local communities is essential. 
Communities provide valuable knowledge, governments offer permits 
and regulations, and organizations contribute funding. The timing of 
migration efforts depends on species and environmental conditions, 
with ongoing monitoring and adaptive management ensuring success. 
The migration of species should align with time slices that have a climate 
suitable for each respective species. Incentives, such as financial support 
and positive recognition, further motivate stakeholders. 

In addition, the model prediction of new suitable areas for these 
species in the future have significant importance. Identifying these 
newly suitable zones is essential for planning future species plantations 
and enhancing ecosystem services. This collaborative, multidisciplinary 
approach, guided by a long-term conservation strategy, aims to urgently 
address the critical need for biodiversity conservation under changing 
climate. Understanding the carbon stock potential of these species is 

Fig. 10. Juniperus procera distribution at (a) Current (b) 2021-2040 SSP5-8.5 
(c) 2041-2060 SSP5-8.5 (d) 2061-2080 SSP5-8.5 and (e) 2081-2100 SSP5-8.5. 

Table 7 
Carbon stock potential under changing climate in SSP2-4.5.  

Period Carbon stock from the suitable areas (ton) The carbon stock could potentially increase in the new suitable areas (ton) 

Acacia abyssinica Carissa edulis Juniperus procera Acacia abyssinica Carissa edulis Juniperus procera 

Current 25688 8832 312106    
2021–2040 47151 15318 464016 27547 7314 226484 
2041–2060 59319 16284 487493 41236 8464 272057 
2061–2080 47658 14582 448825 27716 6670 207150 
2081–2100 46137 15916 481969 32279 8050 255485  
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vital to assess their capacity for mitigating climate change effects. This 
knowledge is also important for monitoring changes in carbon seques-
tration, aligning with initiatives like Clean Development Mechanisms 
(CDM), Reducing Emissions from Deforestation and Forest Degradation 
(REDD+), and other organizations promoting plantation and financial 
incentives. The community stands to potentially benefit from carbon 
credit programs. In light of these findings, it becomes evident that 
addressing the potential impacts of climate change on species distribu-
tion is of highest importance. Developing effective conservation strate-
gies to mitigate these effects is crucial for conserving these species and 
maintaining balanced ecosystems. 

3.7. Limitations and challenges 

The study used developed allometric equations to estimate the 
amount of carbon that the plants could store. This was done due to the 
war and complete siege for more than two years in Tigray region, which 
made it challenging to obtain permission to cut down trees and create 
new equations, as the offices were closed. As a result, the study used 
allometric equations that had already been created by other researchers 
and published in peer-reviewed journals. 

4. Conclusion and future works 

The results of the model work were accurate for modeling species 
distribution. A significant difference (p < 0.05) might exist in the suit-
ability of the environment for these species current compared to the 
future, using two different pathways (SSP2-4.5 and SSP5-8.5) that pre-
dict future conditions. Interestingly, the average suitability value for 
SSP2-4.5 was higher than the current value. Remarkably, the average 
suitability value for SSP5-8.5 pointed to even higher values in the future, 
greater than that of the current thresholds. Areas with either high impact 
or low impact did not seem to change significantly. It is important to 
point out that areas outside the realized niche experienced only minor 
shifts, while new suitable areas shown more noticeable increments. 

Juniperus procera shown a larger distribution in both current and 
future scenarios compared to the other species, and it is predicted to 
maintain its elevation in future scenarios. Similarly, Carissa edulis ap-
pears to possess a more suitable range than Acacia abyssinica across 
present, SSP2-4.5, and SSP5-8.5 scenarios, with the potential to expand 
to higher altitudes (3568 m.a.s.l.) in the future. In addition, Acacia 
abyssinica is projected to occupy elevations up to 3576 m.a.s.l. in the 
future. Furthermore, Acacia abyssinica shows a greater area of newly 
suitable areas compared to the other species. 

The study shown that Juniperus procera stores more carbon than 
Carissa edulis and Acacia abyssinica. Similarly, Acacia abyssinica stores 
more carbon than Carissa edulis. These species are predicted to store 
more carbon in the future, even under changing climate conditions, 
when compared to their current suitable areas. 

Hence, future studies should consider incorporating additional pre-
dictor variables such as water access, disturbance, habitat fragmentation 
and competition and species interactions to better understand the 
impact of climate change on species distribution. Further investigation 
into the additional ecosystem services provided by trees is important. All 
species present in the forest should model using additional species 

distribution models, such as statistical and process-based models, to 
determine their future suitable areas. This proactive approach aims to 
prevent extinction and identify new suitable habitats for the species 
(Gonçalves et al., 2021; Morera et al., 2021). Furthermore, it is more 
useful to assess the carbon stocks of all species. In general, this study 
recommends developing management strategies based on the projected 
species distributions and carbon storage capacities. 
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