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A B S T R A C T   

Diseases on maize crops are highly caused by chronic and emerging pathogens that results in stagnant growth in 
the plant system. Several initiatives have been adopted to manage disease on crops which include new culti-
vation practices, genetic engineering, plant breeding and chemical control which have only proven to perform 
better on laboratory-based approaches. Meanwhile, small holder farmers can hardly afford such intervention 
mechanisms because they are costly and require highly skilled labor. With the advancement of technologies in 
Internet of Things (IoT) and different artificial intelligence models, non-visual signs of disease are being explored 
and experimented in this work for nonvisual early disease detection purposes. Volatile Organic Compounds 
(VOCs), Ultrasound, Nitrogen, Phosphorous, Potassium (NPK) fertilizer are profiled on control maize and 
inoculated maize with Exserohilum turcicum fungus to generate time series data. Dataset generated are pre-
processed, analyzed, and visualized using pandas and matplotlib python tools. Machine Learning algorithms 
have been inferenced on the dataset; Statsmodel for trends and seasonality detection and Pruned Exact Linear 
Time (PELT) for change point detection. Analysis of data on the implemented Internet of Things technology in 
this experiment has achieved nonvisual detection of Northern Leaf Blight (NLB) disease on maize within four 
days post inoculation from monitored Volatile Organic Compounds and ultrasound emission.   

1. Introduction 

Diseases on maize crops are highly caused by chronic and emerging 
pathogens that results in stagnant growth in the plant system [1]. 
Meanwhile [2] has reported a great maize loss due to plant disease by 
40% of yield production in East Africa and [3] realized that food security 
as a part of zero hunger sustainable development goal number two 
(SDG-2) is becoming almost unattainable given the increase in global 
human population. Currently, several initiatives have been adopted to 
manage disease on crops which include new cultivation practices, ge-
netic engineering, plant breeding and chemical control [4] that have 
proven to perform better on laboratory-based approaches. On top of 
these initiatives, small holder farmers are still huge practitioners for 
using traditional application of excessive use of agrochemicals with or 
without the presence of diseases on plants, and this approach has caused 
many undesired side effects on human consumptions such as cancer, 
acute poisoning, and pesticide residue in food just to mention a few [5]. 

Therefore, a reduction on the use of agrochemicals in plants is highly 
needed by applying the needed chemical at the right time with the right 
amount as recommended by [5]. 

In the other traditional and technology-based context, farmers rely 
on visual observations to detect maize diseases [6] with or without the 
help of smart devices. This same approach is also applicable by most 
vision based Deep Neural Networks (DNN) [7–9] to detect and identify a 
disease [10,11], and [12]. However, visual symptoms are the impact of 
late disease detection, at this stage a plant disease cycle has already gone 
through different phases like inoculation, penetration, infection, incu-
bation, reproduction, and survival. Hence, it requires high intervention 
measures to stop the disease from infecting the plant even more [13]. 

Nonvisual disease detections methods that are currently available 
include Polymerase Chain Reaction (PCR) and Enzyme-Linked Immu-
nosorbent Assay (ELISA) [14] more technologies have been identified on 
Table 1. These techniques are performed by following chemical based 
procedures in a scientific laboratory. The approach requires a plant to be 
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subjected to a destructive procedure, with highly skilled personnel and 
techniques are expensive for a smallholder farmer to afford such service 
[15]. An alternate method to overcome such limitations for nonvisual 
disease detection Volatile Organic Compounds emitted by plants have 
been explored for a while now by several research works. [4,16,17] 
observed that plants emit VOCs in a unique pattern when infected by a 
disease and this can be profiled as a plant’s mode of communication. 
There are also different modes of plant’s communication, as presented in 
[18] that when a plant is stressed/unhealthy it emits sounds. The same 
has been observed on fertilizer consumption where the rate varies when 
a crop becomes unhealthy as per [19], hence a special interest on these 
parameters. 

With the advancement of technologies in Internet of Things (IoT) and 
different artificial intelligence models, this research work pioneers in 
exploring nonvisual signs of plant diseases. Implementation of this 
innovation contributes to early disease detection and timely interven-
tion as well offering a promising direction towards effective plant dis-
ease management. Nonvisual signs incorporated in this study include 
volatile organic compounds (VOC), Ultrasound and Nitrogen, Phos-
phorous Potassium (NPK) on maize crops with and without Exserohilum 
turcicum fungus. The identified parameters have the potential of 
generating timeseries data that can be modeled via several approaches 
like how these recent works [28,29] have employed Nonlinear Autore-
gressive (NAR) and Nonlinear Autoregressive models with Exogenous 
Inputs (NARX) with hidden neural layers on univariate time series data 
with the aim of forecasting price trends on cash markets in the field of 
agriculture, drawing inspiration from these sophisticated approaches 
the study takes advantage of the available advanced analytical methods 
detect the presence of Northern Leaf Blight on maize crops. 

Beside using IoT for nonvisual early detection phase, another source 

of delay to start interrupting a detected disease cycle is that, most 
smallholder farmers still require assistance from the fewer plant pa-
thologists or extension officers in order to validate and understand a 
disease and also define intervention measures [26,8]. Additionally, it is 
important to note that social and cultural barriers discourage the 
effective delivery of extension services to farmers, some of the cultural 
beliefs for instance prohibits male extension officers to interact with the 
female farmers hence delays disease detection process [30,31]. Inter-
estingly, the use of technology like chatbots has demonstrated to be a 
great tool to assist end users via natural language conversation, espe-
cially in the case where end users have regular repetitive queries and 
also have low digital literacy to interact with complex technologies, 
which is the case for most smallholder farmers. Chatbots have been 
recently used to support farmers in their agriculture activities [32,33]. 
With respect to the above state of the art, our research contribution is to 
converge IoT and AI chatbots in the near future to develop an automated 
early disease detection service that is user friendly making it easy to 
interact with small holder farmers while reducing physical reliance to 
extension officers. With this study, a tailored nonvisual disease detection 
approach will support small holder farmers to conduct early interven-
tion on maize crops and hence improve yield crops by utilizing afford-
able IoT technology. 

This paper is organized as follows: section II provides an imple-
mentation approach of the experiment performed on maize crops 
together with the use of IoT sensor technology, section III gives a 
highlight of the preprocessed data and together and the data observation 
from the performed experiment lastly, section IV is the conclusion and a 
reflection on future work. 

Table 1 
Different technologies used for various crop disease detection and identification before and after visual symptoms.  

Crop Name Disease Name Detection Phase Technology Used Parameters Measured Limitations Strength Refs. 

Potato Potato Tuber 
(Virus 
Disease) 

Early 
Asymptomatic 
-Penetration 

Extraction and Real Time - 
Polymerase Chain Reaction 
and - enzyme linked 
immunosorbent assays 

Leaf Samples Expensive to be 
affordable for small 
holder farmers, 

Effective method since 
there are lab works 
involved 

[20] 

Maize Chlorotic 
Mottle (Virus 
Disease) 

Quartz Crystal Microbalance 
Biosensor 

Leaf Samples [21] 

Milkweed Caterpiller & 
Aphids 

Early 
Asymptomatic - 
Inoculation and 
Penetration 

Volatile Organic Compound 
(Portable Gas 
Chromatography) 

Chromatogram Require no 
contamination of air, it 
can hardly separate the 
emitted gas with other 
gas emitted in the 
environment 

Very effective method 
for early disease 
detection 

[22] 

Citrus Fruit 
(Valencia 
Orange) 

Penicillium 
Digitatum 
(Bacterial 
Disease) 

Gas chromatography–mass 
spectrometry (GC–MS) 

Bioluminescence Signal - 
VOC 

Postharvest Method, 
Heavy, Expensive 

[23] 

European 
privet 
(Ligustrum 
vulgare L., 
1753 

General 
Condition 

Wireless Sensor Network for 
& Neural Network 
Regression 

Illuminance, 
Temperature, Relative 
Humidity & Total VOC 

Unstable performance in 
the presence of high 
Relative Humidity but 
stabilizes with time 

[24] 

Maize Northern Leaf 
Blight (Fungi 
Disease) 

Late 
Symptomatic - 
Reproduction 

Artificial Intelligence (Deep 
Learning) & KNN Ensemble 

Leaf Images Prediction can only 
happen after symptoms 
have started to occur 

Better for approach 
for identifying disease 
classification 

[10, 
11, 
25] 

Pomegranate General Crop 
Condition 

Late 
Symptomatic - 
Inoculation to 
Reproduction 

IoT Sensors and Machine 
Learning (Hidden Markov 
Model) 

Temperature & 
Humidity 

Prediction from 
environmental data is 
not able to classify a 
particular disease and it 
is not able to confirm the 
presence of a particular 
disease pathogen 

Better approach for 
monitoring 
environmental factors 
so they do not favor 
survival of a pathogen 
on a particular plant 

[26] 

General IoT Sensors Temperature, humidity, 
soil moisture (water 
content in the soil), pH 
(Acidity and Alkalinity), 
Moving Objects (Infrared 
Sensor) 

[27] 

Strawberry IoT Sensors Temperature, humidity, 
CO2 concentration, and 
Illumination Intensity 

[7]  
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2. Materials and methods 

2.1. Convergence framework architecture 

A farmer-centric framework to perform maize nonvisual early dis-
ease detection with the use of IoT sensor data and present data to a low 
digital literacy farmer using chatbot may provide a reliable, rapid, and 
cost-effective alternative to the challenge and it is the implementation 
approach for this work. Data is generated and collected in two modes; 
first mode is from IoT sensor data with considered parameters that are 
volatile organic compounds, ultrasound and soil fertilizer parameters. 
Second mode is knowledge base data to develop a recommender chatbot 
system for guiding farmers managing maize crop diseases. Converging 
multiple technologies is an innovative part of this work whereby we 
bring together different types of technological solutions for uniform 
problem solving [34]. In this study, the collected data from several states 
or modality will be used as input to train a machine learning model for 
crop disease detection and prediction. Referring to Fig. 1 data in 
different forms undergo a pre-processing and cleaning process that can 
be used to train the model. The obtained predictive output together with 
the collected data from agricultural experts via questionnaire and 
interview will then be fed on the chatbot, finally the system will be able 

to provide the appropriate measure to farmers as far as the detected 
maize disease detection are concerned. 

2.2. Non visual symptoms disease detection requirements 

Crop diseases occur under a given favorable conditions with a 
simultaneous interaction of pathogens, environment, and host (plant); 
this is also termed as disease triangle. With a prolonged favoring cli-
matic environment condition, a pathogen can grow, reproduce, and 
affect a particular host. Implementation of any intervention measure to 
stop a plant disease from spreading further requires a disruption in any 
of the earlier identified components on a disease triangle. Apart from 
that, a disease cycle is another important dimension towards identifying 
nonvisual plant disease parameters that include the following stages: 
inoculation, penetration, infection, and survival. 

From the disease triangle, once a disease occurs the pathogen is 
invisible at this earlier stage of a disease cycle that is inoculation. Ad-
vantageously, some parameters such as Volatile Organic Compounds, 
Ultrasound and Fertilizer consumption can be monitored by learning the 
emission pattern to identify the presence of such pathogens on a plant. 
Fig. 2 shows a clear concept of the need for performing an early disease 
detection on plants since early intervention can be achieved and reduce 

Fig. 1. Dataflow on the convergence framework for non-visual disease detection.  

Fig. 2. Plant disease development cycle.  
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the cost for managing crop disease for smallholder farmers. 

2.3. Experimentation approach for dataset generation 

In this study, with a survey done to small holder farmers and agri-
cultural stakeholders Northern Leaf Blight (NLB) is identified as one of 
the most neglected and chronic disease for maize plants in East Africa. 
NLB is caused by Exserohilum turcicum fungus, symptoms are relatively 
large gray elliptical or cigar-shaped lesions that develop on leaves 
ranging from 1 to 6 inches long [35]. In 2007, NLB alone caused 15% of 
the total grain yield loss in Tanzania and Kenya [36,37]. 

A controlled experiment was done to generate inoculum spores of 
Exserohilum turcicum fungus at Sokoine Univerity of Agriculture in 

Tanzania. Four maize varieties were selected based on the farmers and 
seed suppliers’ suggestions. Maize varieties selected are DK8033, 
DK9089, SeedCo 719 (Tembo) and SeedCo 419 (Tumbili). Each maize 
variety was sown in a single pot considering a standard distance of 7 cm 
from each other. Two Treatments (control and inoculated) were placed 
with eight pots each and pots were randomly placed to subject plants to 
an equal chance of receiving humidity, temperature, and light. Irrigation 
took place twice per week and NPK fertilizer of 10 was applied in two 
weeks’ time post sowing. 

Exserohilum turcicum was isolated from NLB diseased plants from a 
maize field. Sterilized pieces of tissue were transferred into sterile potato 
dextrose agar (PDA) medium and incubated at 24 ◦C for 14 days at 12 h 
light/dark cycles (HK & JN) to induce sporulation. Following that, pure 

Fig. 3. Block diagram for the designed IoT system.  

Fig. 4. VOC, Ultrasound and NPK sensors on planted maize crops.  
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cultures were sorted and mixed with distilled water. The spore mixture 
was then pipetted and quantified to 106 spores/ml by adding more 
sterile water. The resulting suspension were filled into prepared bottles 
ready for inoculation onto six leaved maize seedlings (8 weeks old). Set 
of plants were inoculated by pouring distilled water on control plants 
(T1) and a prepared suspension of inoculum spores on inoculated plants 
(T2). The inoculation process took place in the evening to allow spores 
survival because it requires an adequate humidity condition. 

2.4. IoT based data colletion 

IoT sensor technology was implemented to perform a noninvasive 
and nonvisual disease detection. IoT sensors were placed next to maize 
varieties post inoculation for measuring the following parameters: (1) 
total volatile organic compounds (VOCs), (2) soil’s nitrogen, phos-
phorus, potassium (NPK), (3) ultrasound. Fig. 3 shows a block diagram 
for the designed IoT system to collect data on maize crops and Fig. 4 
shows positioned IoT sensors. 

2.4.1. Total Volatile Organic Compound 
Bosch BME688 Development Kit was used for collection of VOCs 

data, this tool is widely used for gas sensing in different use cases such as 
detecting leakage of harmful or noxious gasses. The identified tool 
contains gas sensors that can measure the unique electronic fingerprints 
that enable identification of gas emission patterns of a particular object. 
The development kit operated on a power supply of 5000 mAh. uses 
ESP32 microcontroller, with CR1220 coin cell battery for real time 
tracking and a 32GB microSD for data storage. 

2.4.2. Ultrasound 
Values of sound data were collected by two sensors used inter-

changeably. DAOKI and OSEPP Sound Microphone Sensor were pro-
grammed and operating on ESP8266 microcontroller. Using a WiFi 
module, data was transferred over the cloud on a real time basis and 
later exported for analysis. 

2.4.3. Nitrogen, Phosphorus & Potassium (NPK) 
Taidacent Soil NPK and JXCT soil NPK sensor were used to measure 

the fertilizer consumption over time. Sensors were programmed and 
operated on ELEGOO Nano Board CH 340/ATmega+328P and serial 
communication between board and sensor itself was facilitated by RS- 
485 module. Power supply was generated from direct current (DC) 
powerline. Data was captured from the USB port with the help of 
CoolTerm software for accessing the USB serial port and then store data 
in excel format. 

3. Results and discussion 

3.1. Dataset and data preprocessing 

Data collection between healthy and inoculated maize crops are 
generated in time-series that are organized in rows and columns format. 
Maize VOCs data for healthy were 34,812 and for inoculated were 
38,621 rows. Features of the collected data includes Date and Total 
VOCs (Ohms) metadata for the placed gas sensor. Timestamp for both 
control and inoculated crop was from 26th August 2022 to 11th October 
2022 since the targeted parameter patterns were collected to be able to 
identify the correlation of data before visual symptoms and hence the 
time stamp identified above. 

Data from the sound sensor was captured via Decibel measurement 
with a total of 16,949 rows for control (T1) and 172,595 rows for 
inoculated (T2). For this case the metadata is Date and Sound Level, also 
representing the time series data collected overtime. 

NPK fertilizer consumption data collected summed up to 37,440 
rows for control (T1) maize variety and 23,955 rows for inoculated (T2) 
maize variety. Three individual parameters for NPK, that is Nitrogen, 

Phosphorus and Potassium in (mg/kg) metrics. The data are univariate 
which refers to VOCs, Ultrasound Levels and NPK are independent from 
one another that categorizes our variable to be exogenous. 

3.2. Checking for data stationarity 

Dickey fuller Test (ADF) was used to test for data stationarity, this is 
an approved statistical method to prove the null hypothesis on the data 
[38]. ADF test is applied to check if the generated dataset agrees or 
rejects the null hypothesis by comparing the obtained p-value with the 
threshold value which is 0.05. Results for the stationarity check for both 
of our dataset on VOC are shown on Table 2 and ultrasound level are 
shown on Table 3. 

Results obtained after testing VOCs and sound level data, shows an 
observation that p-value is greater than the threshold value, for this case 
the data is nonstationary and test statistics for both parameter values are 
not near and within the critical values region, in this case it further 
proves that data is nonstationary. In this case [39] argues that, when 
data is not stationary it can only mean that, there’s and observed strong 
trend and seasonality in terms of volatile organic compounds emission 
on both plants and ultrasound: therefore, confirming that it is possible to 
acquire predictable pattern results. 

3.3. Identification of VOCs patterns 

For this experiment, an observation was done on the emission of total 
Volatile Organic Compounds (VOCs) using an electronic gas sensor. 
Collected data shows that there is a variation between the VOCs 

Table 2 
Dickey fuller test on VOCs data.  

Total VOC Dickey Fuller Test (Control Maize): 

Test Statistics − 10.260305904747089 
p-value 4.2538635031500405e-18 
#Lags Used 52 
Number of observations used 34,759 
Critical Values (1%) − 3.4305381464654054 
Critical Values (5%) − 2.8616231560701784 
Critical Values (10%) − 2.566814261365793  

Total VOC Dickey Fuller Test (Inoculated Maize): 

Test Statistics − 8.156155234278934 
p-value 9.40807059183648e-13 
#Lags Used 54 
Number of observations used 38,566 
Critical Values (1%) − 3.4305195725589184 
Critical Values (5%) − 2.8616149470988113 
Critical Values (10%) − 2.5668098919472118  

Table 3 
Dickey fuller test on ultrasound data.  

Ultrasound Dickey Fuller Test (Control Maize): 

Test Statistics − 6.894682160759222 
p-value 1.3281864632799207e-09 
#Lags Used 44 
Number of observations used 16,904 
Critical Values (1%) − 3.430736908027531 
Critical Values (5%) − 2.8617109980249285 
Critical Values (10%) − 2.5668610178758686  

Ultrasound Dickey Fuller Test (Inoculated Maize): 

Test Statistics − 13.253266519843939 
p-value 8.689417848955201e-25 
#Lags Used 42 
Number of observations used 17,252 
Critical Values (1%) − 3.43072910232179 
Critical Values (5%) − 2.861707548432376 
Critical Values (10%) − 2.5668591817077266  
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emission for the control maize plant versus the NLB inoculated maize 
plant. The implemented technology is currently not able to identify 
specific VOCs gasses such as Hexanol and the like, but it is able to give 
information on variation of the total emitted gasses. The IoT based 
sensor response pattern for both controlled and infected maize plants are 
shown on Fig. 5. Additionally, VOCs profiles were sampled overtime 
since the inoculation to be able to study the nonvisual symptoms pattern 
for disease prediction. The profiled emission for the control maize plant 
seemed to decrease overtime while for the NLB inoculated maize plant 
showed a steady increase overtime. 

Thorough observation was also applied on the dataset using stats-
model library for decomposition of time series data into trend and sea-
sonality as shown in Fig. 6. For this case, in the trending aspect of our 
decomposed data we are looking at a pattern of VOC emission that spans 
across daily periods for both control and inoculated maize variety and 
this algorithm is a powerful tool to be applied on the time series data, 
based nature of our problem [40]. The general formula for the stats-
model additive formula is presented as shown on equation one. 

Y(T) = S(t) + T(t) + e(t) (1) 

On recent advancement of time series research works, this work finds 
compatibility with the use of Nonlinear Autoregressive (NAR) model for 

forecasting in cash markets [29]. The study shows the effectiveness on 
the use of classical models for nonlinear time series prediction as the 
study is accurately focusing on accurately forecasting cash markets. This 
work has similarly relied on statsmodel as a machine learning approach 
on monitoring the trend of VOC emission overtime. 

Currently, there are not so much research works that have invested 
on nonvisual detection of disease symptoms for plants, and even for the 
available works done on studying VOCs demands major chemical pro-
cedures. In our study we have observed that there’s a correlation be-
tween gasses emission with time for the healthy and controlled maize 
varieties. A study done on tobacco by [41] shows that, upon infection 
with tobacco mosaic virus (TMV) VOC emission increased, another 
study on tomato plants by [42] observed a significant emission of VOC 
emission upon infection of TMV. Generally, [5] argues that plants use 
VOC as a signal of communication towards physiological processes and 
moreover the research indicates the possibility of capturing these vol-
atile organic compounds in the greenhouse environment as imple-
mented in our experiment with a low powered and noninvasive IoT 
device. Additionally, the emission of VOC from plant leaves is consid-
ered as a defense mechanism from the abiotic or biotic stresses [43,44], 
hence capturing the emission pattern overtime is the right approach to 
be able to detect plant diseases without involving invasive procedures or 

Fig. 5. General VOCs emission for both healthy and inoculated maize.  

Fig. 6. Trend of the VOCs emission for healthy maize (green) and inoculated maize (red).  
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Fig. 7. General ultrasound emission for both healthy and inoculated maize.  

Fig. 8. Trend of the Ultrasound emission for healthy maize (green) and inoculated maize (red).  

Fig. 9. General NPK emission for both healthy and inoculated maize.  
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waiting for visual symptoms from plants leaves. 

3.4. Ultrasound emission patterns 

Microphone placed next to each maize plant stem demonstrated the 
ability to capture the ambient sound level for the greenhouse environ-
ment on both maize varieties on decibel metric. Fig. 7 shows values of 
ultrasound level for healthy maize of about 50 dB which is equal to 
ambient sound level and different from the inoculated sound level values 
that had greater values. More observation has also been attained on the 

data by applying the statsmodel to study the trend and daily seasonality 
of ultrasound emission from the plant. Fig. 8 shows the trend and daily 
seasonality values for both healthy and maize plants. 

Trend values for healthy maize ranges from 55 dB decreasing to 35 
dB max, given the residual values as compared to the inoculated maize 
with values ranging from 40 dB to 160 dB max. Daily captured values for 
healthy maize averaged 20 dB in contrary with the inoculated sound 
values that averaged on 80 dB, and it can only mean that sound emission 
is a proof that a plant is under a distress condition. 

Meanwhile, there are limited number of studies done as far as the 

Fig. 10. Change point detection on VOCs Data for Treatment Two/ NLB inoculated maize.  

Fig. 11. Change point detection on ultrasound data for treatment two/NLB inoculated maize.  
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concept of detecting and managing plant diseases is concerned but 
implemented technologies such as PlantWave [45], as a device that 
places wearable sensors to detect slights electrical variations from plant 
leaves and convert them into musical sound proves that it is possible to 
leverage such concept into detecting the plant disease [46,47] brings 
forth the idea of bioacoustics as one of the fields that needs more 
recognition with its potential to be used for recognizing plants’ psy-
chological processes. Additionally with the observation done on this 
study, inoculated maize plants had higher levels of ultrasound emission 
given different timestamps. 

3.5. NPK consumption pattern 

Data collected from NPK sensors dipped into that soil to show the 
consumption rate by displaying the value of NPK in mg/kg against the 
original values of NPK introduced to the soil. Value collected from the 
soil with healthy maize and inoculated maize varieties could not give a 
conclusive analysis result and hence there was no specific relationship in 
NPK fertilizer consumption on healthy versus NLB inoculated maize 
variety. However, on Fig. 9 data shows a steady rate value for healthy 
maize as compared to the NLB inoculated maize. 

3.6. Change point detection 

On the collected dataset for VOC and Ultrasound, a machine learning 
algorithm was applied to detect the abrupt shift in time series trend that 
could easily be identified on the graphs. Change point detection was 
applied to help in identifying the exact date when earlier identified 
parameters were changing as a method for sending signals due to the 
result of maize plant change of metabiological processes. We used an 
offline change point detection method to analyze the whole data 
sequence for more accurate results using the rupture python package. 
The implemented search method for both inoculated VOC and ultra-
sound data was Pruned Exact Linear Time (PELT). The method was 
selected in our study because it provides quick and optimal results that 
leads to an approximate solution [48]. With the PELT algorithm every 
sample data is sequential, no data is discarded and with linearity pro-
duces a considerably less computational power as compared to other 
rupture methods or algorithms [49]. This is approach is already inline 
with the already established approached as implemented by Xu and 
Zhang [29,50] on the application of machine learning models for short 
term prediction and PELT was selected due to it’s efficiency to provide 
optimal results without discarding data as echoed by Xu [50] on the 
value of model recalibration. 

From the analysis, Fig. 10 shows a change in VOC emission started 
from 01 to 10–2022 and 06–10–2022 as seen on the break points. With 
these results it proves that disease can be detected within three to seven 

days after inoculation given that Treatment two (T2) was inoculated on 
29–09–2022 and as well detection of disease can be achieved seven days 
before visual symptoms. According to the plant disease cycle, it takes 
fourteen days for a plant disease to be visually seen after inoculation has 
successfully taken place. 

Fig. 11 similarly with ultrasound data shows pattern change on 
29–08–2022 just four days post inoculation that in our experiment took 
place on 25–08–2022 for treatment two (T2) of maize varieties. This 
proves that a disease can be detected in less than seven days after 
inoculation and as well before visual symptoms. Meanwhile, from our 
experiment it took about 14 days for visual symptoms to be seen in 
maize leaves after the inoculation as shown on Fig. 12. 

4. Conclusion 

Most research works around agriculture including this one keeps on 
proving that it is possible to use technology for implementing several 
agriculturally based solutions. This work has been able to show the di-
rection towards nonvisual disease detection approach on plants espe-
cially maize crops. The use of Internet of Things, algorithms such as 
statsmodel and PELT to identify the change in VOCs and ultrasound 
emission and as well inclusion of laboratory-based experiment as disease 
inoculation approach has brought shown that; low powered and low- 
cost resourced technology can be utilized to help smallholder farmer 
in Sub-Saharan countries to adopt such technologies and perform earlier 
intervention on disease crop managed. While the study has presented an 
innovative approach toward nonvisual disease detection through the 
application of IoT technology and specific algorithms. This study was 
constrained by the number of embedded devices mounted on maize 
crops, extent of dataset generated that focused on a single maize crop 
and a specific fungus, Exserohilum turcicum. Additionally, controlled 
environment in this study shows promising results further field tests are 
required to validation under actual farming environments. 

In future, the approach will be broadened to cover more pathogens 
and more time to generate more comprehensive time series dataset for 
training deep learning models for inferencing purposes. Field validation 
trials are expected to be set for validation to confirm the efficiency and 
practicality of the presented solution. Generally, the research work 
presented here underscores the contribution of IoT technology toward 
plant disease management by timely intervening the process through 
monitoring nonvisual signs through interactive and accessible tools for 
global food security. 
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