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H I G H L I G H T S  

• The performance of intercalating electrodes was systematically evaluated. 
• The variations in intercalating materials by fabrication route were investigated. 
• Study provides insights for maximizing electrochemical desalination performance. 
• Study guides the development of various BDIs using faradaic materials.  
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A B S T R A C T   

Capacitive deionization (CDI) is an alternative desalination technique for low-to-moderate salinity feeds. Despite 
significant advances in electrode material design, CDI’s thermodynamic energy efficiency (TEE) remains low and 
has become important in assessing feasibility for real-world applications. Innovative cell configurations are key 
to improving TEE; however, their performance trends need to be contextualized, given the scattered information 
that can be challenging to compare. This study evaluates various desalination cells, including conventional CDI, 
single- and multi-channel asymmetric CDI, and multi-channel battery deionization (BDI). Using MoS2 as a 
representative intercalating material, the position of active sites on composite electrodes was first optimized. 
Hydrothermally-grown MoS2 on carbon nanofibers exhibited enhanced charge transfer compared to MoS2 
embedded in nanofibers. Among the tested configurations using 20 mM NaCl in single-pass mode and 50% water 
recovery, BDI demonstrated over 3.7 times higher TEE than asymmetric setups and 50 times higher than typical 
CDI while maintaining consistent desalination performance. BDI benefited from the combined effects of elec-
trosorption/intercalation and ion exchange membranes in symmetric conformation, effectively utilizing charge. 
These findings provide insights into process engineering for improved electrochemical desalination and the 
enhancement of ion intercalation-based desalination configurations.   

1. Introduction 

Capacitive deionization (CDI) is an electrochemical water treatment 
technique used for desalinating low-salinity water (i.e., brackish water) 
or removing ionic substances [1]. Conventional CDI consists of two 
polarized electrodes that capture ions in the electric double layer (EDL) 

when voltage is applied and release them upon voltage removal or 
reversal [2]. The electrodes are the main components in a CDI setup, 
where carbons of varying structures have been most commonly used [3]. 
Novel variations of classical CDI, employing faradaic materials, have 
overcome various limitations associated with carbons (e.g., co-ion 
expulsion effect, carbon oxidation) and achieved high removal 
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capacities [4]. Ion removal using faradaic materials occurs via reversible 
ion intercalation or conversion reactions, leading to better charge uti-
lization since the ions are captured within the entire structure of the 
material rather than only at the surface [2,5]. Cation intercalation-type 
materials (often called faradaic- or battery-type materials) are the most 
studied and are usually composited with carbon materials to enhance 
charge transfer performance and dimensional stability [2,6]. 

Besides the material design perspective, the energy efficiency of CDIs 
is an important yet considerably less addressed aspect, which enables 
the assessment of their feasibility in practical applications [7]. In 
particular, the cell architecture of CDIs plays a significant role in 
enhancing thermodynamic energy efficiency (TEE), which is relatively 
lower than that of electrodialysis (ED) [8] and reverse osmosis (RO) 
[9,10]. Different architectures that have been explored include flow- 
through CDI [5,11], asymmetric CDI [12], flow-electrode CDI [13], 
and multi-channel setups that employ ion exchange membranes (IEMs) 
[14–16]. 

TEE in conventional CDIs is primarily hampered by the co-ion 
desorption effect [17], where ions of the same polarity as the elec-
trode are desorbed as counter-ions are adsorbed. To minimize this 
phenomenon, IEMs [18,19], electrode surface-charge modification [20], 
and the use of permselective faradaic electrodes in asymmetric setups 
[12,21] have been applied, yielding enhanced charge efficiencies. 
However, there are issues of imbalanced ion storage in asymmetric 
setups due to dissimilar anode and cathode properties [22]. Flow- 
electrode CDI [23] may overcome these challenges but introduces 
additional energetic requirements for pumping electrode slurry and 
potential electrode clogging problems [24,25]. Multi-channel cell con-
figurations involving synergistic ion electrosorption/intercalation into 
electrodes and ionic transport between channels through IEMs (similar 
to electrodialysis) may provide continuous water desalination at 
enhanced TEE levels. Such setups have been recently demonstrated 
using carbon electrodes [14,25,26] and faradaic electrodes [15,16,27]. 
While the evolution of configurations in CDIs holds promise, under-
standing performance trends proves challenging due to the abundance 
of scattered information. This difficulty arises from variations in test 
conditions and the use of non-standard metrics, making comparisons 
intricate. Thus, there is an urgent need for a systematic investigation of 
different setups to objectively compare CDI configurations. 

Another important feature in composite faradaic electrodes is the 
location of active sites, which impacts intercalation kinetics and the 
long-term stability of the electrodes in electrochemical environments. 
This is primarily influenced by the fabrication route, where the active 
agent can be embedded in or surface-anchored on a carbon substrate 
[28]. An accurate comparison of cell configurations would be contingent 
upon using electrodes with optimally positioned active agents. 

This study demonstrated the performance variation of ion inter-
calating materials among configurations and between fabrication 
routes. TEE was taken as the main desalination performance indicator 
among the setups examined. Using molybdenum disulfide (MoS2) as a 
representative ion intercalation agent, systematic structural engineering 
was conducted through electrospinning and hydrothermal coatings to 
fabricate free-standing carbon composite electrodes. The effect of elec-
trode structures on electrochemical performance was then systemati-
cally examined by varying the location of active agents. Enhanced 
stability and diffusion-controlled capacitance were attained with 
hydrothermally-grown MoS2, in which majority of the active materials 
were involved in ion storage reactions. The desalination performance of 
hydrothermally-grown MoS2 was evaluated in five different cell con-
figurations, including conventional CDI, single- and multi-channel 
asymmetric CDI, and multi-channel battery deionization (BDI). The 
approach used in this study is anticipated to provide insights into pro-
cess engineering for maximizing electrochemical desalination perfor-
mance and to guide the development of various BDIs using faradaic 
materials. 

2. Materials and methods 

2.1. Materials 

Polyacrylonitrile (PAN, average Mw = 150,000, Sigma-Aldrich, 
Korea), polyvinylpyrrolidone (PVP, average Mw = 1,300,000, Sigma- 
Aldrich, Korea), terephthalic acid (PTA, 98%, Sigma-Aldrich, Korea), 
mineral oil (light, Sigma-Aldrich, Korea), N,N-dimethylformamide 
(DMF, 99.8%, Sigma-Aldrich, Korea), and n-hexane (98%, Samchun 
Chemicals, Korea) were used in nanofiber fabrication. MoS2 nano-
particles (90 nm, 99%, Sigma-Aldrich, Korea) were embedded into the 
nanofibers, while thiourea (CH4N2S, 99%, Sigma-Aldrich, Korea) and 
ammonium heptamolybdate tetrahydrate ((NH4)6Mo7O24•4H2O, 98%, 
Sigma-Aldrich, Korea) were used for the hydrothermal synthesis of MoS2 
nanoflakes on carbon nanofibers. Electrolyte solutions were prepared in 
Millipore-grade deionized water (18.2 MΩ⋅cm) using sodium chloride 
(NaCl, 99%, Sigma-Aldrich, Korea), potassium chloride (KCl, 99%, 
Sigma-Aldrich, Korea), magnesium chloride hexahydrate (MgCl2⋅6H2O, 
99%, Sigma-Aldrich, Korea), and calcium chloride dihydrate 
(CaCl2⋅2H2O, extra pure, Samchun Chemicals, Korea). Ethanol (95%, 
Samchun Chemicals, Korea) was used for washing samples. An anion 
exchange membrane (AEM, Selemion ASVN) and a cation exchange 
membrane (CEM, Selemion CMVN), were supplied by Asahi Glass, 
Japan. 

2.2. Materials preparation 

2.2.1. Fabrication of hollow carbon nanofibers 
The fabrication of hollow carbon nanofibers (Fig. S1a: steps 1–6) was 

carried out using an electrospinning process with a NanoNC electro-
spinning system (ESR-200R2D) equipped with a coaxial nozzle. The core 
diameter of the nozzle was 0.5 mm, and the shell diameter was 1.26 mm 
(16G–21G). Briefly, a 13 wt% electrospinning solution was prepared 
from PAN, PTA, and PVP in a ratio of 7:2:1 in DMF. PAN served as the 
primary carbon source, PTA acted as a pore-forming agent, and PVP 
facilitated the embedding of MoS2 in the nanofibers and provided ni-
trogen. The solution was homogenized by stirring for 14 h at 55 ◦C. The 
solution was then transferred into a 10 mL syringe and used as the shell 
solution during electrospinning at a flow rate of 1.0 mL h− 1. Mineral oil 
was used as the core solution at a flow rate of 0.3 mL h− 1. A voltage of 
13.5 kV was applied between the nozzle and a flat aluminum collector 
placed 12 cm away. The electrospun nanofibers were then peeled off the 
collector, soaked in n-hexane for 12 h to extract the mineral oil, and 
dried in a fume hood. The dried hollow nanofibers were stabilized by 
heating in a muffle furnace at a ramp rate of 2 ◦C min− 1 to 260 ◦C for 2 h. 
Finally, the nanofibers were carbonized in a tube furnace at 800 ◦C for 1 
h under flowing nitrogen gas with a heating rate of 5 ◦C min− 1. The 
carbonized hollow nanofibers were denoted as NF. 

2.2.2. Fabrication of hollow carbon nanofibers embedded with MoS2 
Hollow carbon nanofibers embedded with MoS2 (Fig. S1b) were 

prepared by first dispersing 0.2 g of MoS2 nanoparticles in 10 g of DMF 
and sonicating for 30 min. Using >0.2 g of MoS2 resulted in clogging of 
the nozzle during the electrospinning process. PAN, PTA, and PVP were 
added to the DMF-MoS2 mixture and stirred for 14 h at 55 ◦C. The 
resulting solution was then processed similarly to the NF carbonization 
procedure. The final product was denoted as NFME. 

2.2.3. Hydrothermal coating with MoS2 
For the hydrothermal coating process (Fig. S1a: steps 7–10), the 

precursor solution for MoS2 was prepared by dissolving 0.92 g of 
CH4N2S and 0.5 g of (NH4)6Mo7O24•4H2O in 20 mL of deionized water 
and stirring for 30 min at 25 ◦C. The prepared solution and a piece of NF 
with a diameter of 3.5 cm were then transferred into a 150 mL Teflon- 
lined hydrothermal reactor and kept in an oven at the required tem-
perature (160 ◦C, 200 ◦C, or 230 ◦C) for 16 h. After natural cooling, the 
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samples were washed several times in deionized water and then in 
ethanol, and dried overnight. The as-prepared samples were denoted as 
NFM160, NFM200, and NFM230 according to the synthesis 
temperature. 

2.3. Material structural analysis 

The microstructure and elemental mapping of the fabricated mate-
rials were analyzed using a field emission scanning electron microscope 
(FE-SEM S-4200, Hitachi) equipped with an energy dispersive spec-
trometer (EDS). X-ray diffraction (XRD) with Cu Kα radiation (λ = 1.541 
Å) was employed to examine the material’s crystal structure (Rigaku 
DMax 2500/PC), while the chemical structure was investigated using X- 
ray photoelectron spectroscopy (XPS) with Al Kα (1486.6 eV) in a PHI 
5000 VersaProbe Ulvac-PHI instrument. Fourier transform infrared (FT- 
IR) spectroscopy was conducted using an Agilent Cary 630. Nitrogen 
adsorption-desorption isotherms were measured at 77 K with a Micro-
meritics 3Flex adsorption analyzer. The electrodes’ specific surface area 
was determined via the Brunauer-Emmett-Teller (BET) method, and 
pore size distributions were assessed using the Barrett-Joyner-Halenda 
(BJH) method. The interlayer spacing (d-spacing) in MoS2 was calcu-
lated using Eq. (1) (Bragg equation) [29]. 

dspacing =
nλ

2sinθ
(1)  

where λ is the wavelength of the incident X-ray (λ = 0.154 nm), θ is the 
X-ray’s angle of incidence (rad) to the corresponding plane, and n is the 
diffraction order (n = 1). 

2.4. Electrochemical measurements 

Cyclic voltammetry (CV) and electrochemical impedance spectros-
copy (EIS) measurements were conducted using an electrochemical 
workstation (ZIVE SP1, WonATech Co., Ltd., Korea) with 1 M NaCl 
(unless otherwise stated) in a three-electrode setup consisting of the 
working electrode (as-prepared sample), reference electrode (Ag/AgCl), 
and counter electrode (pristine carbon nanofiber sheet). The electrolyte 
chamber measured 2 cm long × 3 cm diameter. CV scans were con-
ducted at a scan rate of 1.0 mV s− 1 within a potential window of − 0.8 V 
to 0.8 V. EIS tests were performed across the frequency range of 100 kHz 
to 10 mHz with a perturbation amplitude of 5 mV. The specific capac-
itance (Cs, F g− 1) was determined from the CV curves using Eq. (2). 

Cs =

∫
I dV

2mvΔV
(2)  

where I is the response current (A), m is the mass of the working elec-
trode (g), v is the scan rate (V s− 1), and ΔV is the applied potential 
window (V). 

For determination of EDL-based (capacitive) and diffusion- 
controlled capacitances, CV was performed at 0.5, 1.0, and 1.5 mV s− 1 

in a potential window of − 0.8 V to 0.8 V. Quantification was then done 
using Eq. (3) [30,31]. 

i(V) = iEDL + idiffusion = k1v+ k2v1/2 (3)  

where i(V) is the current at a particular voltage (V), iEDL is the capacitive- 
controlled current, idiffusion is the diffusion-controlled current, and k1 and 
k2 are variable parameters that depend on the applied voltage. 

2.5. Desalination cell configurations 

The desalination cells were cylindrical chambers with an effective 
diameter of 3 cm (area = 7.07 cm2) (Fig. S2). Symmetric CDI cells 
(Fig. 1a) utilized NF electrodes as both cathode and anode. The asym-
metric CDI (ACDI) cell (Fig. 1b) utilized NF as the anode and a MoS2- 
loaded electrode as the cathode. A CEM and an AEM were placed 

between the ACDI cells to create a three-channel ACDI (3-Ch ACDI) 
(Fig. 1c). The BDI cells contained MoS2-loaded electrodes on either side, 
with the two-channel BDI (2-Ch BDI) (Fig. 1d) having an AEM in be-
tween, while the four-channel BDI (4-Ch BDI) (Fig. 1e) had 2 AEMs 
separated by a CEM between the electrodes. Graphite foils were used as 
current collectors. For all setups, fabric spacers and silicon rubber gas-
kets with adequately shaped water flow paths were placed between each 
component to maintain uniform flow and prevent leakage. 

A single-pass operation mode was employed during the desalination 
experiments. The feed solution flowed through the cells at a rate of 0.5 
mL min− 1 or 1 mL min− 1 without recirculation. Current and voltage 
supply and recording were conducted via a battery cycler (WBCS3000, 
WonATech Co., Ltd., Korea). A constant voltage of 0.8 V was applied for 
5 min in CDI and ACDI tests to enable ion sorption, while desorption was 
achieved at 0 V for 5 min. For 3-Ch ACDI, a constant voltage of 0.8 V was 
applied for ion removal along the peripheral channels, and then it was 
reversed to − 0.8 V for desalination in the central channel. In the BDI 
cells, a constant current density of 5 A m− 2 was applied to increase the 
voltage to 0.8 V for intercalation in one electrode while the opposite 
electrode was deintercalating. Once 0.8 V was reached, the current was 
reversed (− 5 A m− 2) with a terminal voltage of − 0.8 V to cause a 
reversal in the actions of the electrodes. Effluent conductivity was 
continuously monitored and recorded per second using a flow-through 
conductivity meter (eDAQ, ET908, Australia). 

The specific adsorption capacity (SAC, mg g− 1) was calculated using 
Eq. (4). 

SAC =
M∅

∫ Tc
0 (C0 − Ct) dt

me
(4)  

where M is the molar mass of the solute (g mol− 1), ∅ is the flow rate (L 
s− 1), Tc is the charging time (s), C0 is the feed concentration (mM), Ct is 
the concentration at time t (mM), and me is the electrode mass (g). 

Charge efficiency (Λ, %) was calculated using Eq. (5). 

Λ =
F∅

∫ Tc
0 (C0 − Ct) dt

1000
∫ Tc

0 I dt
(5) 

F is the Faraday’s constant (96,485.33C mol− 1), and I is the current 
(A). 

The specific energy consumption (SEC, kWh m− 3) was calculated 
using Eq. (6). 

Fig. 1. Schematics of electrochemical cells for (a) conventional symmetric CDI, 
(b) ACDI, (c) 3-Ch ACDI, (d) 2-Ch BDI, and (e) 4-Ch BDI. NFMx indicates the 
MoS2-loaded electrode, and x represents the synthesis temperature of MoS2. 
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SEC =

∫ Tc
0 VI dt

3600∅Tc
(6)  

where V is the voltage (V). 
The thermodynamic energy efficiency (TEE, %) was calculated using 

Eq. (7). 

TEE =
Δg
SEC

(7)  

where Δg represents the specific Gibbs free energy of separation, 
determined according to Eq. (8) [5]. 

Δg = 2RT
{

C0

γ
ln
[

C0 − γCD

C0(1 − γ)

]

− CDln
[

C0 − γCD

CD(1 − γ)

]}

(8) 

R is the ideal gas constant (8.314463 J mol− 1 K− 1), T is the absolute 
temperature (K), CD is the average concentration of the product water 
(mM), and γ is the water recovery. 

The maximum and average changes in solution concentration (ΔCmax 
and ΔCav) were calculated using Eqs. (9) and (10), respectively. 

ΔCmax = C0 − Clow (9)  

ΔCav = C0 − CD (10)  

Fig. 2. FE-SEM images of (a) NF, (b) NFM160, (c) NFM200, (d) NFM230, and (e) NFME, and the corresponding EDS mappings of C, Mo, and S in (f) NFME and (g) 
NFM200. (h) FTIR spectra of the as-spun hollow NFs, the NFs after thermal stabilization, and the carbonized hollow NF. (i) XRD spectra of NFM160, NFM200, 
NFM230 and NFME. (j) Mo 3d and (k) S 2p XPS spectra of as-prepared NFME and NFM200. (l) N2 sorption/desorption isotherms and (m) the pore-size distributions of 
NF and NFM200. 
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where, Clow is the lowest concentration (mM) of desalinated effluent. 

3. Results and discussion 

3.1. Physico-chemical properties of MoS2-incorporated carbon nanofibers 

The structural morphology of the as-spun nanofibers was analyzed 
by FE-SEM (Fig. 2a–e). From FE-SEM images, NF exhibited a random 
alignment of hollow fibers with slits, wrinkles, and pitted surfaces 
(Fig. 2a). The average nanofiber diameter was approximately 620 ± 95 
nm. In comparison, the shell thickness measured 130 ± 30 nm. The 
rough surfaces and pits on the nanofibers resulted from the sublimation 
of PTA, which occurs around 300 ◦C [32], and the degradation of PVP 
[33] during the carbonization process. MoS2 nanoflakes are uniformly 
positioned on the nanofiber surfaces. NFM160 (Fig. 2b) has the lowest 
density of nanoflakes due to slower nucleation at the lower temperature 
applied in the hydrothermal process [34], while NFM230 (Fig. 2d) is 
densely covered with some flower-like nanospheres sticking out. A few 
nanospheres are also created on the surface of NFM200 (Fig. 2c). Hy-
drothermally produced MoS2 is known to cluster into dense spheres 
during synthesis [35]. However, the fibrous 3-D carbon network 
inhibited such agglomeration, resulting in the uniform anchoring of 
MoS2 nanoflakes with the observed flower-like morphology. Higher 
temperatures can rapidly grow MoS2 [34], leading to denser deposition 
and agglomeration into nanospheres, as seen with NFM230. These sur-
face attributes among NFMs are critical as they determine the material’s 
specific surface area and pore size distribution, directly influencing its 
specific capacitance and ionic transport [36]. NFME shows the 
embedded MoS2 within the carbon nanofibers in a bead-on-string-like 
formation (Fig. 2e). The distribution of MoS2 on NFME is relatively 
uneven, mainly due to particle-size differences, which are also noted on 
the EDS mapping (Fig. 2f). In contrast, the hydrothermally coated 
samples show a homogeneous distribution (Fig. 2g) owing to the gradual 
growth of particles on the carbon substrate. The structural transition 
from polymeric to carbonized nanofibers was evaluated using FTIR 
analysis (Fig. 2h and Text S1). 

From XRD measurements (Fig. 2i), typical diffraction peaks for 
hexagonal MoS2 were observed in NFMx and NFME, corresponding to 
the (002), (100), (103), (105), and (110) planes of pristine MoS2 
(Fig. S3a, JCPDS #01-077-1716). NFME exhibited narrow diffraction 
peaks depicting high crystallinity of the embedded MoS2, while the 
hydrothermally processed samples had broader peaks. The diffraction 
peak associated with the (002) plane was shifted to a lower 2θ for the 
hydrothermally processed samples and was also seen to shift lower when 
the reaction temperature was reduced, suggesting increased interlayer 
spacing and lower crystallinity [34]. Based on the Bragg equation, the 
interlayer spacings corresponding to the (002) plane were determined to 
be 0.73, 0.66, 0.63, and 0.62 nm for NFM160, NFM200, NFM230, and 
NFME, respectively. Interlayer spacing was an important parameter as it 
would influence ion diffusion kinetics and cycle stability after repeated 
intercalation/deintercalation processes. NFME displayed additional 
peaks at 11.5◦ and 29.3◦ associated with MoO3 [37], attributed to 
oxidation reactions occurring during thermal stabilization. 

The chemical states of the as-prepared materials were identified 
using XPS, showing the presence of molybdenum (Mo), sulfur (S), car-
bon (C), nitrogen (N), and oxygen (O) elements (Fig. S3b). In the Mo 3d 
region (Fig. 2j), NFM200 shows the S 2 s peak at 226.7 eV, corre-
sponding to S2− in MoS2 [38]. The doublet peaks at 229.4 eV and 232.5 
eV are respectively attributed to Mo4+ 3d5/2 and Mo4+ 3d3/2 of MoS2, 
while those at 233.3 eV and 236.4 eV are assignable to Mo6+ 3d5/2 and 
Mo6+ 3d3/2 orbitals in MoO3 [34]. The doublet located at 230.7 eV and 
233.8 eV corresponds to Mo5+ 3d5/2 and Mo5+ 3d3/2, which existed as 
intermediate sulfide phases (MoOxSy) due to the partial reduction of 
Mo6+ [34,39]. Similar Mo peaks were observed in NFME. However, 
NFME peaks corresponding to Mo6+ were stronger, while those associ-
ated with Mo4+ were weaker, indicating significant oxidation of surface 

MoS2 to MoO3 during the thermal stabilization of the nanofibers in air. 
In the S 2p region (Fig. 2k), NFM200 showed a doublet at 162.3 eV and 
163.5 eV, which corresponded to S2− 2p3/2 and S2− 2p1/2 of MoS2, 
respectively, and a peak at 164.8 eV attributable to bridging S2

2− and/or 
apical S2− ligands [40]. The peak at higher binding energy (169.7 eV) 
was attributable to S6+ [41]. NFME showed the S 2p peaks at 163.8 eV, 
164 eV, 165.2 eV, and 169.5 eV, which were assignable to S2− , S2

2− 2p3/ 

2, S2
2− 2p1/2, and S6+, respectively [39,41]. The S6+ peak was broader 

and stronger in NFME, signifying more extensive oxidation than in 
NFM200. These surface characteristics provided a clue to the impor-
tance of electrode fabrication routes, especially when involving thermal 
processes in air using bulk active agents. 

From nitrogen physisorption measurements at 77 K, the pristine NF 
exhibited a type IV isotherm with a hysteresis loop (Fig. 2l), indicating 
the coexistence of micropores and mesopores, essential properties for 
enhanced mass transfer and better access to active sites for electro-
chemical applications [42,43]. In contrast, NFM200 showed a type III 
isotherm after the surface loading of MoS2 on the NF. NF exhibited a 
high BET-specific surface area of 471.94 m2 g− 1 and a total pore volume 
of 0.317 cm3 g− 1, while NFM200 showed a greatly reduced surface area 
of 16.27 m2 g− 1 and a total pore volume of 0.054 cm3 g− 1. The high 
porosity of NF resulted from the hollow and highly pitted structure, as 
observed in the SEM images. In contrast, the hydrothermal process 
resulted in a dense fibrous structure in NFM200 where the hollow core 
was filled, and most of the carbon pores and pits were covered by the 
MoS2 nanoflakes, such that a majority of the accessible surface and 
volume were occupied by the anchored MoS2. The BJH pore size dis-
tribution profiles (Fig. 2m) showed that both NF and NFM200 shared 
narrow mesopores at 4 nm. However, NFM200 had a substantial pro-
portion of larger mesopores (>6 nm) due to the decorative arrangement 
of nanoflakes on the carbon nanofibers. This feature would enhance 
electrochemical activity arising from the well-distributed active sites for 
ion intercalation and a hierarchical pore structure promoting unhin-
dered ionic transport and EDL formation [44]. 

3.2. Electrochemical performance 

3.2.1. Electrochemical properties and ion storage mechanisms 
During CV experiments operated under NaCl electrolyte at a scan 

rate of 1 mV s− 1 (Fig. 3a), NF exhibited an almost rectangular CV shape, 
indicating typical EDL-controlled capacitance [1]. In contrast, the MoS2- 
loaded NF electrodes had leaf-shaped CV profiles indicative of mixed 
EDL capacitance and intercalation pseudocapacitance. Mild bumps were 
also noticeable on the curves of electrodes containing MoS2, attributed 
to increased interaction between MoS2 and Na+ at the nanopore level at 
the low scan rate [31]. Deviation in the mild redox peak positions among 
the MoS2-loaded samples was also observed. This deviation is likely 
caused by the different interlayer sizes of the MoS2, varying proportions 
of carbon and MoS2 in the electrodes, and/or the presence of minor 
impurities, whose effects were largely magnified by the low scan rate 
applied. Regarding plot size, NFM200 had the most prominent CV curve, 
indicating superior capacitance and better ion storage capacity. 

A systematic analysis of the CV curves at varying scan rates was 
performed based on the relationship between the scan rate and the 
response current, as shown in Eq. (3), to differentiate capacitive and 
diffusion-controlled contributions to the overall capacitance. Generally, 
for a pseudocapacitive material, the total response current during CV is 
due to a contribution of surface-controlled/capacitive and diffusion- 
controlled processes. A capacitive process occurs when the response 
current at a particular voltage varies linearly with the scan rate. In 
contrast, a diffusion-controlled process occurs when the current is pro-
portional to the square root of the scan rate [30,31]. For example, 
NFM200 exhibited varying proportions of capacitive and diffusion- 
controlled response currents at a scan rate of 1 mV s− 1, where surface- 
controlled current appears dominant (Fig. 3b). Among the electrodes 
tested, NFM200 possessed the highest total specific capacitance of 
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262.12 F g− 1 and the largest proportion of diffusion-controlled capaci-
tance at 25.16% (Fig. 3c). This resulted from the larger content of 
anchored MoS2 particles on the carbon nanofibers compared to NFM160 
and NFME, and also due to a favorable interlayer spacing as determined 
using XRD, which facilitated better diffusion of ions compared to 
NFM230. The lowest specific capacitance of NFM230 (110.4 F g− 1) 
could be attributed to a highly dense surface and a smaller interlayer 
spacing in the MoS2 that constrained ion intercalation [45]. NFME with 
the embedded MoS2 exhibited low diffusion-controlled capacitance due 
to the reduced accessibility of MoS2. However, it benefitted from the 
highly porous carbon structure to have higher EDL-dominant specific 
capacitance compared to NFM160 and NFM230. 

Nyquist plots from EIS tests (Fig. 3d) were used to evaluate the 
electrochemical resistance characteristics of NFMx and NFME. All 
electrodes exhibited similar plot shapes with a semicircle in the high- 
frequency region (related to charge transfer resistance at the elec-
trode/electrolyte interface) and a slanting line in the low-frequency 
region (related to ion diffusion at the electrode’s surface). NFM200 
had the smallest semicircle and a steeper short slope, indicative of 
enhanced charge transfer capacity and faster ionic diffusion rates. The 
smaller semicircle could be ascribed to a relatively balanced structure 
between NF and MoS2, providing charge conductivity and well- 
distributed active sites for enhanced charge transfer performance [38]. 
Additionally, the micro-mesoporous structure of NFM200 facilitated 
faster ionic transport. In contrast, NFM230 showed a distinctly low slope 
compared to the other samples, which was attributed to highly stacked 
MoS2 nanoflakes slowing down the ionic transport. Overall, NFM200 
performed optimally in the electrochemical tests due to its structural 
and compositional attributes. The hierarchical pore size distribution of 
NFM200 promoted unhindered ion transport, with the accessible MoS2 
nanoflakes serving as active sites on the surface for faster surface ki-
netics. The balance between NF and MoS2 was critical for achieving the 

appropriate crystal structure of MoS2 and sufficient electrical conduc-
tivity from NF, consequently promoting charge transfer. The perfor-
mance of NFM200 demonstrates the importance of active site design for 
composite faradaic electrodes. 

NFM200, with a high proportion of diffusion-controlled capacitance, 
was further evaluated in additional CV analyses using 1 M KCl, CaCl2, 
and MgCl2 electrolytes with different cation sizes. Except for varying 
integrated areas, similarly shaped CV curves (Fig. 3e) were obtained in 
the tested electrolytes, signifying similar processes occurring during CV 
cycling. The calculated total specific capacitance values were 262.12 F 
g− 1 (NaCl), 224.77 F g− 1 (KCl), 214.93 F g− 1 (CaCl2), and 175.08 F g− 1 

(MgCl2) (Fig. 3f). The proportions of diffusion-controlled capacitance 
increased with a decrease in scan rate in all electrolytes due to the higher 
probability of ions for intercalation on the electrode at lower scan rates. 
Generally, the capacitive contribution was dominant, and advantageous 
for rapid ion storage in desalination applications [35]. Considering the 
relatively higher specific capacitance of NFM200 in NaCl electrolyte, it 
can be concluded that intercalation of Na+ in MoS2 was faster and 
kinetically more favorable. The relatively lower performance of CaCl2 
and MgCl2 could be attributed to the divalent nature of the salts, leading 
to increased interactions with MoS2 and sluggish diffusion kinetics [46]. 
Understanding the effects of these cations further elucidates the 
contribution of surface-anchored MoS2 in the composite electrode. The 
stability of the intercalation electrodes in electrochemical environments 
was analyzed using CV as described in Text S2 and illustrated in Figs. S4 
and S5. Accordingly, NFM200 was selected for subsequent desalination 
tests with different cell configurations, considering its higher specific 
capacitance, a larger proportion of diffusion-controlled activity, and fair 
electrochemical stability. 

3.3. Desalination performance 

3.3.1. Symmetric and asymmetric CDI configurations 
Various desalination tests were conducted in constant voltage single- 

pass conditions using a 20 mM NaCl feed solution under CDI, ACDI, and 
3-Ch ACDI configurations (Fig. 4a). NFM200 served as a cathode in the 
ACDI setups. A very low desalination extent was observed for symmetric 
CDI, with the sole NF electrode showing an ΔCmax of 0.9 mM at 0.5 mL 
min− 1; ACDI and 3-Ch ACDI exhibited higher ΔCmax values of 3.8 mM 
and 10.8 mM, respectively. Since the effluent concentration was not 
constant over the charging duration in these setups, ΔCav were much 
lower at approximately 0.6 mM, 1.7 mM, and 4.9 mM for CDI, ACDI, and 
3-Ch ACDI, respectively. Typical current profiles (Fig. 4b) in constant 
voltage experiments were exhibited by the three configurations of CDI, 
ACDI, and 3-Ch ACDI. The calculated SAC and Λ (Fig. 4c and d, 
respectively) followed the order of 3-Ch ACDI > ACDI > CDI (e.g., 
79.9% > 69.3% > 21% for Λ, respectively). The low performance of 
conventional CDI configuration was due to unwanted charge utilization 
by co-ion desorption and the limited capacity of NF, which relied solely 
on the EDL for ion capture. The obtained SAC was also lower than most 
values reported in the literature for carbon materials due to the low 
applied voltage (0.8 V) compared to the commonly used voltage (1.2 V). 
An improved performance was observed in ACDI because of the higher 
capacity cathode (NFM200), which could capture Na+ capacitively on 
the surface and intercalate it into the interlayer space of MoS2. Simul-
taneously, Cl− was electrosorbed on the carbon anode. The asymmetric 
nature of the cell and preferential selectivity of MoS2 for cations also 
minimized co-ion desorption at the cathode, leading to improved SAC 
and Λ. The higher SAC in 3-Ch ACDI was certainly due to the combined 
effects of intercalation and electrosorption processes similar to ACDI. In 
addition, effective ion separation across the CEM and AEM in the multi- 
channel ACDI resulted in ion-rich and desalinated streams separated by 
the membranes. A higher Λ could also be achieved due to reduced co-ion 
desorption at the cathode and the extra channel containing expelled 
ions. 

Likewise, the calculated SEC (Fig. 4e) and TEE (Fig. 4f) followed the 

Fig. 3. (a) CV curves of the electrodes, (b) representation of the portions of 
capacitive and diffusion-controlled currents of NFM200, (c) capacitive and 
diffusion-controlled capacitance of the electrodes at 1 mV s− 1, (d) Nyquist plots 
of the electrodes (inset: zoomed in the high-frequency region), (e) CV curves of 
NFM200 in different 1 M electrolytes at 1 mV s− 1, and (f) capacitance contri-
bution comparison for NFM200 in different electrolytes. 
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order of 3-Ch ACDI > ACDI > CDI (e.g., 0.06% > 0.22% > 0.9% for TEE, 
respectively). The lower SEC in CDI was primarily due to low current 
density at constant voltage operation caused by high resistance and 
reactions occurring at the plain electrode. Additionally, parasitic con-
sumption of applied charge in co-ion desorption led to an extremely low 
TEE since a very small ΔCav could be attained. In ACDI and 3-Ch ACDI, 
high current density due to faradaic activity was the likely cause of the 
increased consumed energy. More importantly, TEE was improved due 
to the higher ΔCav; this demonstrates the importance of cell configura-
tion in achieving higher energy efficiency for CDIs. 

3.3.2. Battery deionization configurations 
The superior performance of ACDI with the combination of NFM200 

and IEMs prompted the evaluation of the electrode in BDI configuration 
with constant current operation (Fig. 5a). After applying a constant 
current (±5 A m− 2), a decrease in effluent conductivity occurred in the 
desalination channel, while it increased in the salination channel and 
reached a constant value maintained until the set terminal voltage of 
±0.8 V was reached and reversed. The 4-channel BDI cell exhibited a 
larger degree of salt removal with an ΔCav of 6.5 mM at 0.5 mL min− 1 

and 3.8 mM at 1 mL min− 1. In contrast, 2-Ch BDI maintained an ΔCav of 
3.8 mM at 0.5 mL min− 1 and 2.7 mM at 1 mL min− 1. The desalination 
step durations at 1 mL min− 1 were ~12 and 9 min for 2-Ch BDI and 4-Ch 
BDI, respectively. The shorter duration in 4-Ch BDI resulted from the 
larger ohmic (iR) drop and higher overall cell resistance (higher slope) 
(Fig. 5b), leading to a smaller usable voltage window. The additional 
IEMs and complexity in cell assembly likely contributed to increased 
ohmic resistances in the 4-Ch BDI cell. Nevertheless, more IEMs/ 

channels could yield a larger ΔCav due to increased influent retention 
time per channel as the flow rate and applied current density remained 
unchanged. As expected, 4-Ch BDI had higher SAC and Λ compared to 2- 
Ch BDI (Fig. 5c and d, respectively). The enhanced SAC was mainly due 
to the greater ΔCav in the 4-channel cell without any change in electrode 
mass; this was also the case for Λ, where more ions were removed while 
current density remained constant. The SEC in both setups (Fig. 5e) was 
fairly comparable at the higher flow rate but slightly higher in 4-Ch BDI 
at 0.5 mL min− 1. Generally, the higher resistance at constant current due 
to more water streams and IEMs in 4-Ch BDI implied an increased SEC. 
This effect became more pronounced because of depleted ions in the cell 
when the flow rate was reduced, increasing the overall resistance. 
Nevertheless, as for TEE (Fig. 5f), 4-Ch BDI yielded a higher value 
(2.99%) than 2-Ch BDI (1.78%) because of the considerably larger ΔCav, 
corresponding to a larger Gibbs free energy of separation per volume of 
produced water [5]. 

The effect of flow rate in all configurations was notable. Increased 
flow rate caused increased SAC and Λ while reducing ΔCav, SEC, and 
TEE. The increased SAC and Λ were attributed to increased delivered 
ions and improved removal kinetics facilitated by mass ion transfer. 
However, a faster flow rate reduced the ions’ retention time in the cell, 
hence decreasing ΔCav and TEE. Nevertheless, an increasing flow rate 
indicates a larger volume of processed water, leading to reduced energy 
consumed per unit of water. 

Cyclic voltammetry revealed faster diffusion kinetics between 
NFM200 and Na+. To verify this in a desalination setup, tests were 
carried out using NaCl, KCl, CaCl2, and MgCl2 in a 2-Ch BDI cell with 
NFM200 as the electrodes. Two sets of solutions were prepared: the first 

Fig. 4. (a) Representative desalination and (b) current density profiles (1 mL min− 1) of the different configurations in constant voltage (0.8 V) mode with NFM200. 
(c) Specific adsorption capacity (SAC), (d) charge efficiency (Λ), (e) specific energy consumption (SEC), and (f) thermodynamic energy efficiency (TEE) comparison of 
the different configurations. 
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set with the salt solutions at the same electrical conductivity, and the 
second set with equal concentration. It should be noted that this was not 
a selectivity test as the different salt solutions were not mixed. The 
desalination profiles (Fig. S6a and b) showed the highest desalination 
extents with NaCl in both instances. The rate of decrease in solution 
concentration (gradient of desalination profile at the start) in the equi-
molar set of solutions (Fig. S6b) was high for both NaCl and KCl, 
implying a more rapid uptake of the monovalent cations by the elec-
trode. Considering the faster and higher extent of desalination by 
NFM200 with NaCl, it was evident that the intercalation/deintercalation 
of Na+ in MoS2 was kinetically more favorable than K+, Ca2+, and Mg2+. 
This was likely due to its monovalent nature and more negative inter-
calation energy compared to K+ [38,47]. Better extents of desalination 
were also observed with KCl than with CaCl2 or MgCl2, which could be 
attributed to a smaller hydrated ionic radius in K+ [48] and a lower 
dehydration energy required for its partial dehydration during interca-
lation [49]. Additionally, the divalent nature of Ca2+ and Mg2+ caused 
slower ion mobility due to more interactions with MoS2 [46]. Thus, 
increased charge density in multivalent ions could be a deterrent factor 
slowing down ion intercalation, while the hydrated ionic radii size, 
dehydration energy, and intercalation energy are important factors 
affecting cation intercalation kinetics in MoS2 [38,46,50]. 

3.3.3. Performance evaluation in various cell configurations 
Even with NFM200 as a representative faradaic material, notable 

variations in desalination efficiency were observed upon changing the 
cell configurations. For a fair evaluation of performance among the 
configurations, cycling stability and TEE of the electrodes were inves-
tigated under consistent experimental conditions. In a typical 2-Ch BDI 
cell, the desalination cycling test of NFM200 displayed a slight reduction 
in SAC from ~30 mg g− 1 to ~20 mg g− 1 over the first nine cycles before 
stabilization (Fig. 6a). This could be attributed to slower deintercalation 
of Na+ during the initial intercalation/deintercalation cycles (i.e., not all 
intercalated Na+ could be deintercalated during discharge), leading to 
quick electrode saturation in the ensuing cycles due to incomplete 

electrode discharge. The consequence was a decreasing SAC because of 
shorter successive charging durations, where charging time gradually 
decreased by several seconds each subsequent cycle. The SAC gradually 
stabilized after about the 9th cycle with a tendency to increase. It is 
believed that with repeated intercalation/deintercalation cycles, there 
was an expansion of the MoS2 interlayer spacing, which alleviated me-
chanical strain, enhanced access to active sites, and enabled easier and 
more rapid mobility of Na+ in and out of the interlayer space, leading to 
a more stabilized SAC as observed for the rest of the cycles [48]. Such 
structural expansion of MoS2 has been previously reported by Chen et al. 
[51] and Srimuk et al. [52]. A control test using NFME showed similar 
stabilized performance but a smaller SAC reduction in the initial cycles, 
likely due to minimized MoS2 layer expansion by the surrounding car-
bon structure. The SAC of NFME gradually declined over cycles, 
attributed to the surface oxidation and co-ion desorption of the exposed 
carbon layers as the main active sites. The performance of NFM200 in 
asymmetric setups showed relatively stable SACs from the start but lost 
approximately 16.1% and 15.7% of the original values for ACDI and 3- 
Ch ACDI, respectively, after the 50th cycle. An oxidized anode mainly 
caused the capacity decay in ACDI and 3-Ch ACDI due to inevitable 
carbon oxidation. Nevertheless, no inversion occurred as in the CDI cell 
of sole NF (Fig. S7), which exhibited a gradual reduction in ΔCav over 
time and an eventual inversion of the electrosorption and desorption 
cycles due to rapid carbon oxidation. These cycle stability tests help 
discern the long-term usability and reliability of the intercalating ma-
terial in relation to the configuration used. 

To comprehensively understand the impact of CDI configurations on 
desalination performance, the trend in TEE of the various configurations 
was evaluated as a function of ΔCav at a productivity of ~43 L h− 1 m− 2 

(Fig. 6b), with a comparison of data from the literature with similar 
productivity (~40–50 L h− 1 m− 2). Comprehensive data from more 
configurations are provided in Table S1, including typical approaches 
like MCDI with lower TEE (<3%). Throughout the literature, improved 
TEE in MCDI is noted only when there is an increase in cell stacks or 
significantly lower productivity. Two-channel BDIs exhibit high per-
formance, with TEE between 3 and 15% at productivities up to ~43 L 
h− 1 m− 2. Our systematic analysis across various configurations shows 
that TEE was in the order 4-Ch BDI (5.43%) > 2-Ch BDI (NFM200) 
(3.61%) > 2-Ch BDI (NFME) (2.1%) > 3-Ch ACDI (1.4%) > ACDI (0.9%) 
> CDI (0.1%) when tested under consistent conditions. This finding 
signifies more efficient energy utilization with intercalation electrodes 
by controlling the cell symmetry and using multiple channels. The 
location of active sites on the electrode also plays a critical role in 
enhancing the diffusion-controlled activity, with a three-fold higher TEE 
observed in NFM200 compared to NFME in an identical 2-Ch BDI setup. 
Additionally, the effect of more IEMs is evident in the >47% higher TEE 
in 4-Ch BDI than in 2-Ch BDI. A similar trend was reported by Kim et al. 
[16] using copper hexacyanoferrate electrodes where an 81% and 123% 
increase in TEE were realized by increasing the channels to four and six, 
respectively. Along with the number of IEMs, flow channel dimensions, 

Fig. 5. (a) Representative desalination and (b) voltage profiles (1 mL min− 1) of 
2-Ch BDI and 4-Ch-BDI at a constant current density of 5 A m− 2 and cutoff 
voltage of ±0.8 V. (c) Specific adsorption capacity (SAC), (d) charge efficiency 
(Λ), (e) specific energy consumption (SEC), and (f) thermodynamic energy ef-
ficiency (TEE) comparison of the setups. 

Fig. 6. (a) Specific adsorption capacity (SAC) stability over 50 cycles of 2-Ch 
BDI (NFM200 and NFME), ACDI (NFM200), 3-Ch ACDI (NFM200), and CDI 
(NF). (b) Thermodynamic energy efficiency (TEE) versus changes in solution 
concentration (ΔCav) of the different configurations with a comparison of other 
works from the literature at a productivity of (~40–50 L h− 1 m− 2). 
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and separation stages are configuration-based factors that can influence 
TEE in BDI and result in varying values even for the same materials [53]. 

As for the material perspective, the fabrication route of carbon 
composite electrodes significantly influenced the performance of active 
materials. Compounds like bulk MoS2 are particularly sensitive to 
fabrication processes involving high temperatures in air [54], as 
observed in NFME. Additionally, the amount of active materials 
embedded in host carbon is limited depending on the complexity of the 
fabrication process. Therefore, convenient processes such as hydro-
thermal coating could be preferable as they offer advantages in con-
trolling the structural distribution and the number of active sites. 
Importantly, there is a need to rule out unwanted surface oxidation re-
actions that can alter the material’s structure, requiring an optimal 
balance in composition between carbon and active material. 

In terms of cell architecture, multi-channel configurations with a 
cation intercalation electrode in both symmetric and asymmetric setups 
resulted in enhanced TEE. The effect of uneven electrode chemistry and 
capacity in asymmetric configurations was significant in determining 
the cell’s Λ and ΔCav, which directly influence TEE. For BDI, a balanced 
electrode configuration and minimal co-ion desorption yielded high Λ 
and ΔCav, which could be further increased by increasing the channels to 
achieve a higher TEE. Considering the typical examples of MoS2 elec-
trodes ever reported with relatively high SACs and Λs (Table S2), it is 
envisioned that a higher TEE would be possible if their setups were 
hybridized with IEMs. However, the number of IEMs in the system 
should be selected elaborately as it directly influences the cell’s ohmic 
resistance, determining the effective voltage window [16]. Therefore, to 
achieve optimal desalination performance with intercalating materials, 
a BDI configuration with an appropriate number of multi-channels 
would be the most effective approach, where the cost of IEMs and en-
ergy aspects of the entire system should be well balanced. 

Considering the relatively rapid diffusion kinetics with monovalent 
cations (Na+ and K+), NFM200 may be a promising material for the 
electrochemical extraction of valuable ionic species such as Li+ from 
aqueous sources. As already reported in the literature, the use of selec-
tive electrodes in CDI to separate Li+ and various cations has great po-
tential for practical application [55–57]. Enhanced cation selectivity in 
NFM200, for instance, can be achievable by tailoring charge cycle du-
rations (relatively short cycles) to target rapid monovalent cation uptake 
while preventing ion exchange between multivalent and monovalent 
cations that occur with lengthy charge durations [49]. 

4. Conclusion 

In conclusion, this study aimed to systematically evaluate the per-
formance of intercalating electrodes in different CDI-based desalination 
configurations, including conventional CDI, single- and multi-channel 
ACDI, and multi-channel BDI. Composite carbon electrodes with MoS2 
were fabricated via electrospinning and hydrothermal coating to control 
the surface attributes of the electrodes (e.g., the location and the number 
of active sites). TEE served as an overall performance indicator in 
evaluating the desalination configurations as it considers both the 
amount of ions removed and the energy consumed. The main conclu-
sions are as follows:  

• A higher diffusion-controlled activity was achieved when the MoS2 
nanoflakes were hydrothermally grown on the surface of carbon 
nanofibers at 200 ◦C, resulting in a specific capacitance of 262.12 F 
g− 1. The balance between nanofiber and MoS2 provided hierarchical 
porosity to promote ion transport and accessible active sites for faster 
charge transfer. 

• Despite using the same intercalating electrode, significant discrep-
ancies in desalination efficiency were observed when altering cell 
configurations. Among the examined configurations, 4-Ch BDI 
demonstrated a TEE of 5.43%, over 50 times higher than conven-
tional CDI (0.1%) and 1.5 times higher than 2-Ch BDI (3.61%). While 

TEE in 3-Ch ACDI (1.4%) improved by 55% compared to single- 
channel ACDI (0.9%), it was 3.9 times lower than in 4-Ch BDI and 
2.6 times lower than in 2-Ch BDI. These findings underscore the 
superior energy efficiency of symmetric multi-channel BDIs in 
desalination.  

• Therefore, integrating faradaic desalination electrodes with IEMs can 
emerge as the optimal strategy for enhancing energy efficiency and 
boosting the competitiveness of CDI technology. To further enhance 
TEE, future endeavors could prioritize optimizing operational con-
ditions, such as water recovery, which directly influences cell resis-
tance in multi-channel cells. 
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