.

Enhancing Identification of Meteorological and Biological Targets Using the Depolarization Ratio for Weather Radar: A Case Study of FAW Outbreak in Rwanda

Show simple item record

dc.contributor.author Maniraguha, Fidele
dc.contributor.author Vodacek, Anthony
dc.contributor.author Kim, Kwang Soo
dc.contributor.author Ndashimye, Emmanuel
dc.contributor.author Rushingabigwi, Gerard
dc.date.accessioned 2024-07-24T06:31:51Z
dc.date.available 2024-07-24T06:31:51Z
dc.date.issued 2024-07-09
dc.identifier.uri https://repository.rsif-paset.org/xmlui/handle/123456789/439
dc.description Journal Article en_US
dc.description.abstract Leveraging weather radar technology for environmental monitoring, particularly the detection of biometeors like birds, bats, and insects, presents a significant challenge due to the dynamic nature of their behavior. Unlike hydrometeor targets, biometeor targets exhibit arbitrary changes in direction and position, which significantly alter radar wave polarization upon scattering. This study addresses this challenge by introducing a novel methodology utilizing Rwanda’s C-Band Polarization Radar. Our approach exploits the capabilities of dual-polarization radar by analyzing parameters such as differential reflectivity (ZDR) and correlation coefficient (RHOHV) to derive the Depolarization Ratio (DR). While existing radar metrics offer valuable insights, they have limitations in fully capturing depolarization effects. To address this, we propose an advanced fuzzy logic algorithm (FL_DR) integrating the DR parameter. The FL_DR’s performance was rigorously evaluated against a standard FL algorithm. Leveraging a substantial dataset comprising nocturnal clear air radar echoes collected during a Fall Armyworm (FAW) outbreak in maize fields from September 2020 to January 2021, the FL_DR demonstrated a notable improvement in accuracy compared to the existing FL algorithm. This improvement is evident in the Fraction of Echoes Correctly Identified (FEI), which increased from 98.42% to 98.93% for biological radar echoes and from 87.02% to 95.81% for meteorological radar echoes. This enhanced detection capability positions FL_DR as a valuable system for monitoring, identification, and warning of environmental phenomena in regions similar to tropical areas facing FAW outbreaks. Additionally, it could be tested and further refined for other migrating biological targets such as birds, insects, or bats. en_US
dc.publisher Remote Sensing en_US
dc.subject depolarization ratio (DR); fuzzy logic algorithm; fall armyworm (FAW) detection; weather radar; FAW early warning system en_US
dc.title Enhancing Identification of Meteorological and Biological Targets Using the Depolarization Ratio for Weather Radar: A Case Study of FAW Outbreak in Rwanda en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search RSIF Digital Repository


Advanced Search

Browse

My Account