Abstract:
This work is devoted to the study of the emitting properties of azimuthally inhomogeneous segmental dielectric resonators excited by whispering gallery modes. Due to the diffraction of the azimuthal waves on local nonhomogeneities located equidistantly along the azimuthal coordinate, intense electromagnetic radiation is achieved in the azimuthal sector of the angles 0°-360°. A prototype of an all-around emitting antenna based on basis of a segmental dielectric resonator is proposed, and its characteristics in the far zone are studied. It is shown that such an antenna forms a multilobe radiation pattern (72 lobes) in the circle sector of angles. The antenna gain in the lobes at the resonant frequency reaches 12 dB. Antenna optimization is achieved in the proposed method because of the large gain produced by the antenna. It is also analyzed that these types of radiation patterns observed by antennas are well used for the Internet of Things- (IoT-) based applications.